Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Chem Rev ; 122(10): 9497-9570, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35357148

RESUMO

In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.


Assuntos
Ácidos Nucleicos , Proteínas , Biologia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Ácidos Nucleicos/química , Proteínas/química
2.
Nucleic Acids Res ; 49(7): 3841-3855, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33744941

RESUMO

Barrier-to-autointegration factor (BAF), encoded by the BANF1 gene, is an abundant and ubiquitously expressed metazoan protein that has multiple functions during the cell cycle. Through its ability to cross-bridge two double-stranded DNA (dsDNA), it favours chromosome compaction, participates in post-mitotic nuclear envelope reassembly and is essential for the repair of large nuclear ruptures. BAF forms a ternary complex with the nuclear envelope proteins lamin A/C and emerin, and its interaction with lamin A/C is defective in patients with recessive accelerated aging syndromes. Phosphorylation of BAF by the vaccinia-related kinase 1 (VRK1) is a key regulator of BAF localization and function. Here, we demonstrate that VRK1 successively phosphorylates BAF on Ser4 and Thr3. The crystal structures of BAF before and after phosphorylation are extremely similar. However, in solution, the extensive flexibility of the N-terminal helix α1 and loop α1α2 in BAF is strongly reduced in di-phosphorylated BAF, due to interactions between the phosphorylated residues and the positively charged C-terminal helix α6. These regions are involved in DNA and lamin A/C binding. Consistently, phosphorylation causes a 5000-fold loss of affinity for dsDNA. However, it does not impair binding to lamin A/C Igfold domain and emerin nucleoplasmic region, which leaves open the question of the regulation of these interactions.


Assuntos
Proteínas de Ligação a DNA , DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína
3.
Nature ; 530(7588): 45-50, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26808899

RESUMO

Intracellular aggregation of the human amyloid protein α-synuclein is causally linked to Parkinson's disease. While the isolated protein is intrinsically disordered, its native structure in mammalian cells is not known. Here we use nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy to derive atomic-resolution insights into the structure and dynamics of α-synuclein in different mammalian cell types. We show that the disordered nature of monomeric α-synuclein is stably preserved in non-neuronal and neuronal cells. Under physiological cell conditions, α-synuclein is amino-terminally acetylated and adopts conformations that are more compact than when in buffer, with residues of the aggregation-prone non-amyloid-ß component (NAC) region shielded from exposure to the cytoplasm, which presumably counteracts spontaneous aggregation. These results establish that different types of crowded intracellular environments do not inherently promote α-synuclein oligomerization and, more generally, that intrinsic structural disorder is sustainable in mammalian cells.


Assuntos
Espaço Intracelular/química , Espaço Intracelular/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Acetilação , Linhagem Celular , Citoplasma/química , Citoplasma/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Células HeLa , Humanos , Neurônios/citologia , Neurônios/metabolismo , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
4.
Anal Chem ; 92(18): 12423-12428, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786451

RESUMO

Intrinsically disordered proteins (IDPs) constitute an important class of biomolecules with high flexibility. Atomic-resolution studies for these molecules are essentially limited to NMR spectroscopy, which should be performed under physiological pH and temperature to populate relevant conformational ensembles. In this context, however, fundamental problems arise with established triple resonance NMR experiments: high solvent accessibility of IDPs promotes water exchange, which disfavors classical amide 1H-detection, while 13C-detection suffers from significantly reduced sensitivity. A favorable alternative, the conventional detection of nonexchangeable 1Hα, so far resulted in broad signals with insufficient resolution and sensitivity. To overcome this, we introduce here a selective Hα,Cα-correlating pure shift detection scheme, the selective Hα,Cα-HSQC (SHACA-HSQC), using extensive hetero- and homonuclear decoupling applicable to aqueous samples (≥90% H2O) and tested on small molecules and proteins. SHACA-HSQC spectra acquired on IDPs provide uncompromised resolution and sensitivity (up to fivefold increased S/N compared to the standard 1H,13C-HSQC), as shown for resonance distinction and unambiguous assignment on the disordered transactivation domain of the tumor suppressor p53, α-synuclein, and folded ubiquitin. The detection scheme can be implemented in any 1Hα-detected triple resonance experiment and may also form the basis for the detection of isotope-labeled markers in biological studies or compound libraries.


Assuntos
Proteínas Intrinsicamente Desordenadas/análise , Humanos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteína Supressora de Tumor p53/análise , Ubiquitina/análise , alfa-Sinucleína/análise
5.
Angew Chem Int Ed Engl ; 59(26): 10411-10415, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32181947

RESUMO

Abundant phosphorylation events control the activity of nuclear proteins involved in gene regulation and DNA repair. These occur mostly on disordered regions of proteins, which often contain multiple phosphosites. Comprehensive and quantitative monitoring of phosphorylation reactions is theoretically achievable at a residue-specific level using 1 H-15 N NMR spectroscopy, but is often limited by low signal-to-noise at pH>7 and T>293 K. We have developed an improved 13 Cα-13 CO correlation NMR experiment that works equally at any pH or temperature, that is, also under conditions at which kinases are active. This allows us to obtain atomic-resolution information in physiological conditions down to 25 µm. We demonstrate the potential of this approach by monitoring phosphorylation reactions, in the presence of purified kinases or in cell extracts, on a range of previously problematic targets, namely Mdm2, BRCA2, and Oct4.


Assuntos
Proteína BRCA2/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína BRCA2/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Humanos , Concentração de Íons de Hidrogênio , Ressonância Magnética Nuclear Biomolecular , Fator 3 de Transcrição de Octâmero/química , Fosforilação , Proteínas Proto-Oncogênicas c-mdm2/química , Temperatura
6.
Proc Natl Acad Sci U S A ; 112(40): 12402-7, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392565

RESUMO

Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a ß-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized "interaction landscape" of the cellular interior.


Assuntos
Dobramento de Proteína , Desdobramento de Proteína , Proteínas/química , Termodinâmica , Algoritmos , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Dicroísmo Circular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Temperatura
7.
Nat Chem Biol ; 10(12): 1000-2, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25362358
8.
J Am Chem Soc ; 137(20): 6468-71, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25963544

RESUMO

Cell signaling is governed by dynamic changes in kinase and phosphatase activities, which are difficult to assess with discontinuous readout methods. Here, we introduce an NMR-based reporter approach to directly identify active kinases and phosphatases in complex physiological environments such as cell lysates and to measure their individual activities in a semicontinuous fashion. Multiplexed NMR profiling of reporter phosphorylation states provides unique advantages for kinase inhibitor studies and reveals reversible modulations of cellular enzyme activities under different metabolic conditions.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Células K562 , Fosfotransferases/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Fatores de Tempo
9.
Biochim Biophys Acta ; 1834(7): 1396-401, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23360766

RESUMO

We comparatively analyzed the basal activity of extra-cellular signal-regulated kinase (Erk1/2) in lysates of 10 human colorectal cancer cell lines by semi-quantitative Western blotting and time-resolved NMR spectroscopy. Both methods revealed heterogeneous levels of endogenous Erk1/2 activities in a highly consistent manner. Upon treatment with U0126, an inhibitor of mitogen-activated protein kinase kinase (MEK) acting upstream of Erk1/2, Western-blotting and NMR congruently reported specific modulations of cellular phospho-Erk levels that translated into reduced kinase activities. Results obtained in this study highlight the complementary nature of antibody- and NMR-based phospho-detection techniques. They further exemplify the usefulness of time-resolved NMR measurements in providing fast and quantitative readouts of kinase activities and kinase inhibitor efficacies in native cellular environments. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).


Assuntos
Butadienos/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Nitrilas/farmacologia , Biocatálise/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Células HCT116 , Humanos , Cinética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Reprodutibilidade dos Testes , Especificidade por Substrato , Fatores de Tempo
10.
Org Biomol Chem ; 12(24): 4218-32, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24836582

RESUMO

Synthetic functional mimics of the O-antigen from Shigella flexneri 2a are seen as promising vaccine components against endemic shigellosis. Herein, the influence of the polysaccharide non-stoichiometric di-O-acetylation on antigenicity is addressed for the first time. Three decasaccharides, representing relevant internal mono- and di-O-acetylation profiles of the O-antigen, were synthesized from a pivotal protected decasaccharide designed to tailor late stage site-selective O-acetylation. The latter was obtained via a convergent route involving the imidate glycosylation chemistry. Binding studies to five protective mIgGs showed that none of the acetates adds significantly to broad antibody recognition. Yet, one of the five antibodies had a unique pattern of binding. With IC50 in the micromolar to submicromolar range mIgG F22-4 exemplifies a remarkable tight binding antibody against diversely O-acetylated and non-O-acetylated fragments of a neutral polysaccharide of medical importance.


Assuntos
Antígenos O/biossíntese , Antígenos O/imunologia , Shigella flexneri/imunologia , Acetilação , Anticorpos Antibacterianos/imunologia , Configuração de Carboidratos , Antígenos O/química , Espectroscopia de Prótons por Ressonância Magnética
11.
Front Mol Biosci ; 10: 1148302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065450

RESUMO

Aberrant aggregation of the transactive response DNA-binding protein (TDP-43) is associated with several lethal neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia. Cytoplasmic neuronal inclusions of TDP-43 are enriched in various fragments of the low-complexity C-terminal domain and are associated with different neurotoxicity. Here we dissect the structural basis of TDP-43 polymorphism using magic-angle spinning solid-state NMR spectroscopy in combination with electron microscopy and Fourier-transform infrared spectroscopy. We demonstrate that various low-complexity C-terminal fragments, namely TDP-13 (TDP-43300-414), TDP-11 (TDP-43300-399), and TDP-10 (TDP-43314-414), adopt distinct polymorphic structures in their amyloid fibrillar state. Our work demonstrates that the removal of less than 10% of the low-complexity sequence at N- and C-termini generates amyloid fibrils with comparable macroscopic features but different local structural arrangement. It highlights that the assembly mechanism of TDP-43, in addition to the aggregation of the hydrophobic region, is also driven by complex interactions involving low-complexity aggregation-prone segments that are a potential source of structural polymorphism.

12.
J Am Chem Soc ; 134(50): 20533-43, 2012 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-23171049

RESUMO

PTEN phosphatase is a tumor suppressor controlling notably cell growth, proliferation and survival. The multisite phosphorylation of the PTEN C-terminal tail regulates PTEN activity and intracellular trafficking. The dynamical nature of such regulatory events represents a crucial dimension for timing cellular decisions. Here we show that NMR spectroscopy allows reporting on the order and kinetics of clustered multisite phosphorylation events. We first unambiguously identify in vitro seven bona fide sites modified by CK2 and GSK3ß kinases and two new sites on the PTEN C-terminal tail. Then, monitoring the formation of transient intermediate phosphorylated states, we determine the sequence of these reactions and calculate their apparent rate constants. Finally, we assess the dynamic formation of these phosphorylation events induced by endogenous kinases directly in extracts of human neuroblastoma cells. Taken together, our data indicate that two cascades of events controlled by CK2 and GSK3ß occur independently on two clusters of sites (S380-S385 and S361-S370) and that in each cluster the reactions follow an ordered model with a distributive kinetic mechanism. Besides emphasizing the ability of NMR to quantitatively and dynamically follow post-translational modifications, these results bring a temporal dimension on the establishment of PTEN phosphorylation cascades.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Ressonância Magnética Nuclear Biomolecular , PTEN Fosfo-Hidrolase/química , Fosforilação
13.
J Am Chem Soc ; 134(18): 7616-9, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22519908

RESUMO

Methylation and acetylation of protein lysine residues constitute abundant post-translational modifications (PTMs) that regulate a plethora of biological processes. In eukaryotic proteins, lysines are often mono-, di-, or trimethylated, which may signal different biological outcomes. Deconvoluting these different PTM types and PTM states is not easily accomplished with existing analytical tools. Here, we demonstrate the unique ability of NMR spectroscopy to discriminate between lysine acetylation and mono-, di-, or trimethylation in a site-specific and quantitative manner. This enables mapping and monitoring of lysine acetylation and methylation reactions in a nondisruptive and continuous fashion. Time-resolved NMR measurements of different methylation events in complex environments including cell extracts contribute to our understanding of how these PTMs are established in vitro and in vivo.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Acetilação , Células HeLa , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Humanos , Lisina/análise , Espectroscopia de Ressonância Magnética , Metilação , Processamento de Proteína Pós-Traducional
14.
J Biomol NMR ; 54(3): 217-36, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23011410

RESUMO

Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.


Assuntos
Espectroscopia de Ressonância Magnética , Processamento de Proteína Pós-Traducional , Proteínas/química , Acetilação , Acilação , Alquilação , Aminoácidos/química , Aminoácidos/metabolismo , Arginina/metabolismo , Comunicação Celular , Células Eucarióticas/metabolismo , Glicosilação , Histidina/metabolismo , Lisina/metabolismo , Metilação , Fosforilação , Proteínas/metabolismo , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo
15.
Biochem Soc Trans ; 40(5): 950-4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22988846

RESUMO

The notion that human α-synuclein is an intrinsically disordered monomeric protein was recently challenged by a postulated α-helical tetramer as the physiologically relevant protein structure. The fact that this alleged conformation had evaded detection for so many years was primarily attributed to a widely used denaturation protocol to purify recombinant α-synuclein. In the present paper, we provide in-cell NMR evidence obtained directly in intact Escherichia coli cells that challenges a tetrameric conformation under native in vivo conditions. Although our data cannot rule out the existence of other intracellular protein states, especially in cells of higher organisms, they indicate clearly that inside E. coli α-synuclein is mostly monomeric and disordered.


Assuntos
Escherichia coli/metabolismo , Ressonância Magnética Nuclear Biomolecular , alfa-Sinucleína/metabolismo , Escherichia coli/química , Escherichia coli/citologia , Humanos , Conformação Proteica , alfa-Sinucleína/química
16.
Prog Nucl Magn Reson Spectrosc ; 132-133: 1-112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36496255

RESUMO

NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.


Assuntos
Metabolômica , Ácidos Nucleicos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Imageamento por Ressonância Magnética/métodos , Espectrometria de Massas
17.
Glycobiology ; 21(1): 109-21, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21030536

RESUMO

The O-antigen (O-Ag), the polysaccharide part of the lipopolysaccharide, is the major target of the serotype-specific protective humoral response elicited upon host infection by Shigella flexneri, the main causal agent of the endemic form of bacillary dysentery. The O-Ag repeat units (RUs) of 12 S. flexneri serotypes share the tetrasaccharide backbone →2)-α-l-Rhap-(1 â†’ 2)-α-l-Rhap-(1 â†’ 3)-α-l-Rhap-(1 â†’ 3)-ß-d-GlcpNAc-(1→, with site-selective glucosylation(s) and/or O-acetylation defining the serotypes. To investigate the conformational basis of serotype specificity, we sampled conformational behaviors during 60 ns of molecular dynamic simulations for oligosaccharides representing three RUs of each one of the O-Ags corresponding to serotypes 1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b, 5a, 5b, X and Y, respectively. The calculated trajectories were checked by nuclear magnetic resonance (NMR) for 1a, 2a, 3a and 5a O-Ags. The simulations predict that in all O-Ags, but 1a and 1b, serotype-specific substitutions of the backbone do not induce any new backbone conformations compared with the linear type O-Ag Y, although they restrain locally the accessible conformational space. Moreover, the influence of any given substituent on the backbone is independent of the eventual presence of other substituents. Finally, only slight differences in conformational behavior between terminal and inner RUs were observed. These results suggest that the reported serotype-specificity of the protective immune response is not due to recognition of distinct backbone conformations, but to binding of the serotype-defining substituents in the O-Ag context. The gained knowledge is discussed in terms of impact on the development of a broad-serotype coverage vaccine.


Assuntos
Lipopolissacarídeos/química , Antígenos O/química , Vacinas contra Shigella/química , Shigella flexneri/imunologia , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Antígenos O/imunologia , Vacinas contra Shigella/imunologia
18.
Glycobiology ; 21(12): 1570-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21610193

RESUMO

Carbohydrates are likely to maintain significant conformational flexibility in antibody (Ab):carbohydrate complexes. As demonstrated herein for the protective monoclonal Ab (mAb) F22-4 recognizing the Shigella flexneri 2a O-antigen (O-Ag) and numerous synthetic oligosaccharide fragments thereof, the combination of molecular dynamics simulations and nuclear magnetic resonance saturation transfer difference experiments, supported by physicochemical analysis, allows us to determine the binding epitope and its various contributions to affinity without using any modified oligosaccharides. Moreover, the methods used provide insights into ligand flexibility in the complex, thus enabling a better understanding of the Ab affinities observed for a representative set of synthetic O-Ag fragments. Additionally, these complementary pieces of information give evidence to the ability of the studied mAb to recognize internal as well as terminal epitopes of its cognate polysaccharide antigen. Hence, we show that an appropriate combination of computational and experimental methods provides a basis to explore carbohydrate functional mimicry and receptor binding. The strategy may facilitate the design of either ligands or carbohydrate recognition domains, according to needed improvements of the natural carbohydrate:receptor properties.


Assuntos
Anticorpos Monoclonais/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Oligossacarídeos/química
19.
J Biomol NMR ; 51(4): 487-95, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22008951

RESUMO

We report enhanced sensitivity NMR measurements of intrinsically disordered proteins in the presence of paramagnetic relaxation enhancement (PRE) agents such as Ni(2+)-chelated DO2A. In proton-detected (1)H-(15)N SOFAST-HMQC and carbon-detected (H-flip)(13)CO-(15)N experiments, faster longitudinal relaxation enables the usage of even shorter interscan delays. This results in higher NMR signal intensities per units of experimental time, without adverse line broadening effects. At 40 mmol·L(-1) of the PRE agent, we obtain a 1.7- to 1.9-fold larger signal to noise (S/N) for the respective 2D NMR experiments. High solvent accessibility of intrinsically disordered protein (IDP) residues renders this class of proteins particularly amenable to the outlined approach.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Compostos Heterocíclicos com 1 Anel/química , Níquel/química , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA