Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 22(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34769382

RESUMO

The adhesion of Staphylococcus aureus to abiotic surfaces is crucial for establishing device-related infections. With a high number of single-cell force spectroscopy measurements with genetically modified S. aureus cells, this study provides insights into the adhesion process of the pathogen to abiotic surfaces of different wettability. Our results show that S. aureus utilizes different cell wall molecules and interaction mechanisms when binding to hydrophobic and hydrophilic surfaces. We found that covalently bound cell wall proteins strongly interact with hydrophobic substrates, while their contribution to the overall adhesion force is smaller on hydrophilic substrates. Teichoic acids promote adhesion to hydrophobic surfaces as well as to hydrophilic surfaces. This, however, is to a lesser extent. An interplay of electrostatic effects of charges and protein composition on bacterial surfaces is predominant on hydrophilic surfaces, while it is overshadowed on hydrophobic surfaces by the influence of the high number of binding proteins. Our results can help to design new models of bacterial adhesion and may be used to interpret the adhesion of other microorganisms with similar surface properties.


Assuntos
Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Silício/metabolismo , Staphylococcus aureus/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície
2.
J Mol Recognit ; 30(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28256775

RESUMO

Streptococcus mutans cells form robust biofilms on human teeth and are strongly related to caries incidents. Hence, understanding the adhesion of S. mutans in the human oral cavity is of major interest for preventive dentistry. In this study, we report on atomic force microscopy-based single-cell force spectroscopy measurements of S. mutans cells to hydroxyapatite surfaces. We observe for almost all measurements a significant difference in adhesion strength for S. mutans as well as for Staphylococcus carnosus cells. However, the increase in adhesion strength after saliva exposure is much higher for S. mutans cells compared to S. carnosus cells. Our results demonstrate that S. mutans cells are well adapted to their natural environment, the oral cavity. This ability promotes the biofilm-forming capability of that species and hence the production of caries-provoking acids. In consequence, understanding the fundamentals of this mechanism may pave a way towards more effective caries-reducing techniques.


Assuntos
Biofilmes/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Saliva/química , Streptococcus mutans/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Durapatita/química , Humanos , Microscopia de Força Atômica , Saliva/microbiologia , Análise de Célula Única , Streptococcus mutans/patogenicidade , Streptococcus mutans/ultraestrutura , Dente/microbiologia , Dente/ultraestrutura
3.
Int J Med Microbiol ; 307(2): 116-125, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28117265

RESUMO

Staphyloccocus aureus is a major human pathogen and a common cause for superficial and deep seated wound infections. The pathogen is equipped with a large arsenal of virulence factors, which facilitate attachment to various eukaryotic cell structures and modulate the host immune response. One of these factors is the extracellular adherence protein Eap, a member of the "secretable expanded repertoire adhesive molecules" (SERAM) protein family that possesses adhesive and immune modulatory properties. The secreted protein was previously shown to impair wound healing by interfering with host defense and neovascularization. However, its impact on keratinocyte proliferation and migration, two major steps in the re-epithelialization process of wounds, is not known. Here, we report that Eap affects the proliferation and migration capacities of keratinocytes by altering their morphology and adhesive properties. In particular, treatment of non-confluent HaCaT cell cultures with Eap resulted in cell morphology changes as well as a significant reduction in cell proliferation and migration. Eap-treated HaCaT cells changed their appearance from an oblong via a trapezoid to an astral-like shape, accompanied by decreases in cell volume and cell stiffness, and exhibited significantly increased cell adhesion. Eap had a similar influence on endothelial and cancer cells, indicative for a general effect of Eap on eukaryotic cell morphology and functions. Specifically, Eap was found to interfere with growth factor-stimulated activation of the mitogen-activated protein kinase (MAPK) pathway that is known to be responsible for cell shape modulation, induction of proliferation and migration of epithelial cells. Western blot analyses revealed that Eap blocked the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2) in keratinocyte growth factor (KGF)-stimulated HaCaT cells. Together, these data add another antagonistic mechanism of Eap in wound healing, whereby the bacterial protein interferes with keratinocyte migration and proliferation.


Assuntos
Proteínas de Bactérias/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/fisiologia , Proteínas de Ligação a RNA/metabolismo , Staphylococcus aureus/patogenicidade , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
4.
Soft Matter ; 11(46): 8913-9, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26294050

RESUMO

The adhesion of pathogenic bacteria to surfaces is of immense importance for health care applications. Via a combined experimental and computational approach, we studied the initiation of contact in the adhesion process of the pathogenic bacterium Staphylococcus aureus. AFM force spectroscopy with single cell bacterial probes paired with Monte Carlo simulations enabled an unprecedented molecular investigation of the contact formation. Our results reveal that bacteria attach to a surface over distances far beyond the range of classical surface forces via stochastic binding of thermally fluctuating cell wall proteins. Thereby, the bacteria are pulled into close contact with the surface as consecutive proteins of different stiffnesses attach. This mechanism greatly enhances the attachment capability of S. aureus. It, however, can be manipulated by enzymatically/chemically modifying the cell wall proteins to block their consecutive binding. Our study furthermore reveals that fluctuations in protein density and structure are much more relevant than the exact form of the binding potential.


Assuntos
Aderência Bacteriana , Staphylococcus aureus/química , Interações Hidrofóbicas e Hidrofílicas , Método de Monte Carlo , Proteínas/metabolismo , Propriedades de Superfície
5.
Eur Phys J E Soft Matter ; 38(12): 140, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26701715

RESUMO

The atomic force microscope (AFM) evolved as a standard device in modern microbiological research. However, its capability as a sophisticated force sensor is not used to its full capacity. The AFM turns into a unique tool for quantitative adhesion research in bacteriology by using "bacterial probes". Thereby, bacterial probes are AFM cantilevers that provide a single bacterium or a cluster of bacteria as the contact-forming object. We present a step-by-step protocol for preparing bacterial probes, performing force spectroscopy experiments and processing force spectroscopy data. Additionally, we provide a general insight into the field of bacterial cell force spectroscopy.


Assuntos
Bactérias/citologia , Microscopia de Força Atômica/instrumentação , Aderência Bacteriana , Calibragem , Células Imobilizadas/citologia , Viabilidade Microbiana , Análise de Célula Única
6.
Langmuir ; 29(18): 5528-33, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23556545

RESUMO

The mechanisms of action of fluoride have been discussed controversially for decades. The cavity-preventive effect for teeth is often traced back to effects on demineralization. However, an effect on bacterial adhesion was indicated by indirect macroscopic studies. To characterize adhesion on fluoridated samples on a single bacterial level, we used force spectroscopy with bacterial probes to measure adhesion forces directly. We tested the adhesion of Streptococcus mutans , Streptococcus oralis , and Staphylococcus carnosus on smooth, high-density hydroxyapatite surfaces, pristine and after treatment with fluoride solution. All bacteria species exhibit lower adhesion forces after fluoride treatment of the surfaces. These findings suggest that the decrease of adhesion properties is a further key factor for the cariostatic effect of fluoride besides the decrease of demineralization.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Cárie Dentária/tratamento farmacológico , Durapatita/farmacologia , Fluoretos/uso terapêutico , Streptococcus/efeitos dos fármacos , Cárie Dentária/microbiologia , Oxirredução , Propriedades de Superfície
7.
Langmuir ; 28(18): 7242-8, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22475009

RESUMO

Controlling the interface between bacteria and solid materials has become an important task in biomedical science. For a fundamental and comprehensive understanding of adhesion it is necessary to seek quantitative information about the involved interactions. Most studies concentrate on the modification of the surface (chemical composition, hydrophobicity, or topography) neglecting, however, the influence of the bulk material, which always contributes to the overall interaction via van der Waals forces. In this study, we applied AFM force spectroscopy and flow chamber experiments to probe the adhesion of Staphylococcus carnosus to a set of tailored Si wafers, allowing for a separation of short- and long-range forces. We provide experimental evidence that the subsurface composition of a substrate influences bacterial adhesion. A coarse estimation of the strength of the van der Waals forces via the involved Hamaker constants substantiates the experimental results. The results demonstrate that the uppermost layer is not solely responsible for the strength of adhesion. Rather, for all kinds of adhesion studies, it is equally important to consider the contribution of the subsurface.


Assuntos
Aderência Bacteriana , Dióxido de Silício/química , Staphylococcus/química , Materiais Biocompatíveis/química , Microscopia de Força Atômica , Propriedades de Superfície
8.
Nanoscale ; 12(37): 19267-19275, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32935690

RESUMO

Bacterial adhesion to surfaces is a crucial step in initial biofilm formation. In a combined experimental and computational approach, we studied the adhesion of the pathogenic bacterium Staphylococcus aureus to hydrophilic and hydrophobic surfaces. We used atomic force microscopy-based single-cell force spectroscopy and Monte Carlo simulations to investigate the similarities and differences of adhesion to hydrophilic and hydrophobic surfaces. Our results reveal that binding to both types of surfaces is mediated by thermally fluctuating cell wall macromolecules that behave differently on each type of substrate: on hydrophobic surfaces, many macromolecules are involved in adhesion, yet only weakly tethered, leading to high variance between individual bacteria, but low variance between repetitions with the same bacterium. On hydrophilic surfaces, however, only few macromolecules tether strongly to the surface. Since during every repetition with the same bacterium different macromolecules bind, we observe a comparable variance between repetitions and different bacteria. We expect these findings to be of importance for the understanding of the adhesion behaviour of many bacterial species as well as other microorganisms and even nanoparticles with soft, macromolecular coatings, used e.g. for biological diagnostics.


Assuntos
Aderência Bacteriana , Staphylococcus aureus , Biofilmes , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Propriedades de Superfície
9.
Nanoscale ; 11(42): 19713-19722, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31599281

RESUMO

Microbial adhesion and the subsequent formation of resilient biofilms at surfaces are decisively influenced by substrate properties, such as the topography. To date, studies that quantitatively link surface topography and bacterial adhesion are scarce, as both are not straightforward to quantify. To fill this gap, surface morphometry combined with single-cell force spectroscopy was performed on surfaces with irregular topographies on the nano-scale. As surfaces, hydrophobized silicon wafers were used that were etched to exhibit surface structures in the same size range as the bacterial cell wall molecules. The surface structures were characterized by a detailed morphometric analysis based on Minkowski functionals revealing both qualitatively similar features and quantitatively different extensions. We find that as the size of the nanostructures increases, the adhesion forces decrease in a way that can be quantified by the area of the surface that is available for the tethering of cell wall molecules. In addition, we observe a bactericidal effect, which is more pronounced on substrates with taller structures but does not influence adhesion. Our results can be used for a targeted development of 3D-structured materials for/against bio-adhesion. Moreover, the morphometric analysis can serve as a future gold standard for characterizing a broad spectrum of material structures.


Assuntos
Antibacterianos/química , Aderência Bacteriana , Nanoestruturas/química , Silício/química , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície
10.
Artigo em Inglês | MEDLINE | ID: mdl-30038902

RESUMO

The extracellular adherence protein (Eap) of Staphylococcus aureus is a secreted protein known to exert a number of adhesive and immunomodulatory properties. Here we describe the intrinsic DNA binding activity of this multifunctional secretory factor. By using atomic force microscopy, we provide evidence that Eap can bind and aggregate DNA. While the origin of the DNA substrate (e.g., eukaryotic, bacterial, phage, and artificial DNA) seems to not be of major importance, the DNA structure (e.g., linear or circular) plays a critical role with respect to the ability of Eap to bind and condense DNA. Further functional assays corroborated the nature of Eap as a DNA binding protein, since Eap suppressed the formation of "neutrophil extracellular traps" (NETs), composed of DNA-histone scaffolds, which are thought to function as a neutrophil-mediated extracellular trapping mechanism. The DNA binding and aggregation activity of Eap may thereby protect S. aureus against a specific anti-microbial defense reaction from the host.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Armadilhas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno , Neutrófilos/imunologia , Proteínas de Ligação a RNA/metabolismo , Staphylococcus aureus/imunologia , Staphylococcus aureus/fisiologia , Células Cultivadas , Humanos , Microscopia de Força Atômica , Neutrófilos/microbiologia
11.
Nanoscale ; 9(28): 10084-10093, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28695218

RESUMO

Bacterial adhesion is a crucial step during the development of infections as well as the formation of biofilms. Hence, fundamental research of bacterial adhesion mechanisms is of utmost importance. So far, less is known about the size of the contact area between bacterial cells and a surface. This gap will be filled by this study using a single-cell force spectroscopy-based method to investigate the contact area between a single bacterial cell of Staphylococcus aureus and a solid substrate. The technique relies on the strong influence of the hydrophobic interaction on bacterial adhesion: by incrementally crossing a very sharp hydrophobic/hydrophilic interface while performing force-distance curves with a single bacterial probe, the bacterial contact area can be determined. Assuming circular contact areas, their radii - determined in our experiments - are in the range from tens of nanometers to a few hundred nanometers. The contact area can be slightly enlarged by a larger load force, yet does not resemble a Hertzian contact, rather, the enlargement is a property of the individual bacterial cell. Additionally, Staphylococcus carnosus has been probed, which is less adherent than S. aureus, yet both bacteria exhibit a similar contact area size. This corroborates the notion that the adhesive strength of bacteria is not a matter of contact area, but rather a matter of which and how many molecules of the bacterial species' cell wall form the contact. Moreover, our method of determining the contact area can be applied to other microorganisms and the results might also be useful for studies using nanoparticles covered with soft, macromolecular coatings.


Assuntos
Aderência Bacteriana , Parede Celular/ultraestrutura , Staphylococcus aureus/ultraestrutura , Biofilmes , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Propriedades de Superfície
12.
ACS Appl Mater Interfaces ; 8(39): 25848-25855, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27598387

RESUMO

Hydroxyapatite substrates are common biomaterials, yet samples of natural teeth do not meet the demands for well-defined, highly reproducible properties. Pellets of hydroxyapatite were produced via the field assisted sintering technology (FAST) as well as via pressureless sintering (PLS). The applied synthesis routes provide samples of very high density (95%-99% of the crystallographic density) and of very low surface roughness (lower than 1 nm when averaged per 1 µm2). The chemical composition of the raw material (commercial HAP powder) as well as the crystalline structure is maintained by the sintering processes. These specimens can therefore be considered as promising model surfaces for studies on the interactions of biomaterial with surfaces of biological relevance, as demonstrated for the adsorption of BSA proteins.


Assuntos
Esmalte Dentário , Materiais Biocompatíveis , Durapatita , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
13.
Beilstein J Nanotechnol ; 5: 1501-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25247133

RESUMO

Unspecific adhesion of bacteria is usually the first step in the formation of biofilms on abiotic surfaces, yet it is unclear up to now which forces are governing this process. Alongside long-ranged van der Waals and electrostatic forces, short-ranged hydrophobic interaction plays an important role. To characterize the forces involved during approach and retraction of an individual bacterium to and from a surface, single cell force spectroscopy is applied: A single cell of the apathogenic species Staphylococcus carnosus isolate TM300 is used as bacterial probe. With the exact same bacterium, hydrophobic and hydrophilic surfaces can be probed and compared. We find that as far as 50 nm from the surface, attractive forces can already be recorded, an indication of the involvement of long-ranged forces. Yet, comparing the surfaces of different surface energy, our results corroborate the model that large, bacterial cell wall proteins are responsible for adhesion, and that their interplay with the short-ranged hydrophobic interaction of the involved surfaces is mainly responsible for adhesion. The ostensibly long range of the attraction is a result of the large size of the cell wall proteins, searching for contact via hydrophobic interaction. The model also explains the strong (weak) adhesion of S. carnosus to hydrophobic (hydrophilic) surfaces.

14.
Eur J Pharm Biopharm ; 84(2): 315-24, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23333897

RESUMO

UNLABELLED: Inflammatory activation of alveolar macrophages by ambient particles can be facilitated via Toll-like receptors (TLR). The action of TLR agonists and antagonists has been reported to depend on the formation of nanoparticulate structures. Aim of the present study was to identify the signaling pathways induced by nanoparticulate structures in human macrophages, which might be critical for inflammatory cell activation. METHODS: Studies were performed in primary human alveolar macrophages or in differentiated THP-1 macrophages. Silica nanoparticles were prepared by Stöber synthesis and characterized by dynamic light scattering and scanning electron microscopy. Mycobacterial DNA was isolated from Mycobacterium bovis BCG, and nanoparticle formation was assessed by atomic force microscopy and dynamic light scattering. Actin polymerization was measured by phalloidin-TRITC staining, and cell activation was determined by reverse transcription quantitative PCR analysis, L929 cytotoxicity assay (cytokine induction), and pull-down assays (Rho GTPases). RESULTS: In contrast to immune stimulatory sequence ISS 1018, BCG DNA spontaneously formed nanoparticulate structures and induced actin polymerization as did synthetic silica nanoparticles. Co-incubation with silica nanoparticles amplified the responsiveness of macrophages toward the TLR9 ligand ISS 1018. The activation of Rac1 was induced by silica nanoparticles as well as BCG DNA and is suggested as the critical signaling event inducing both cytoskeleton changes as well as inflammatory cell activation. CONCLUSION: Nanoparticles can induce signaling pathways, which amplify an inflammatory response in macrophages.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Nanopartículas/química , Proteínas rac1 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Citoesqueleto/metabolismo , DNA Bacteriano/análise , Ativação Enzimática , Humanos , Inflamação , Luz , Macrófagos Alveolares/enzimologia , Camundongos , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Varredura , Mycobacterium bovis/metabolismo , Espalhamento de Radiação , Transdução de Sinais , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA