Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 582(7813): 561-565, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32365353

RESUMO

Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate in Escherichia coli owing to the size and occasional instability of the genome1-3. Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of the Coronaviridae, Flaviviridae and Pneumoviridae families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step in Saccharomyces cerevisiae using transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.


Assuntos
Betacoronavirus/genética , Clonagem Molecular/métodos , Infecções por Coronavirus/virologia , Genoma Viral/genética , Genômica/métodos , Pneumonia Viral/virologia , Genética Reversa/métodos , Biologia Sintética/métodos , Animais , COVID-19 , China/epidemiologia , Chlorocebus aethiops , Cromossomos Artificiais de Levedura/metabolismo , Infecções por Coronavirus/epidemiologia , RNA Polimerases Dirigidas por DNA/metabolismo , Evolução Molecular , Humanos , Mutação , Pandemias/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Vírus Sinciciais Respiratórios/genética , SARS-CoV-2 , Saccharomyces cerevisiae/genética , Células Vero , Proteínas Virais/metabolismo , Zika virus/genética
2.
Cell Rep ; 36(5): 109493, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34320400

RESUMO

Safe and effective vaccines are urgently needed to stop the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We construct a series of live attenuated vaccine candidates by large-scale recoding of the SARS-CoV-2 genome and assess their safety and efficacy in Syrian hamsters. Animals were vaccinated with a single dose of the respective recoded virus and challenged 21 days later. Two of the tested viruses do not cause clinical symptoms but are highly immunogenic and induce strong protective immunity. Attenuated viruses replicate efficiently in the upper but not in the lower airways, causing only mild pulmonary histopathology. After challenge, hamsters develop no signs of disease and rapidly clear challenge virus: at no time could infectious virus be recovered from the lungs of infected animals. The ease with which attenuated virus candidates can be produced and administered favors their further development as vaccines to combat the ongoing pandemic.


Assuntos
Vacinas contra COVID-19 , COVID-19/imunologia , COVID-19/prevenção & controle , Sistema Respiratório/patologia , Sistema Respiratório/virologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Animais , Chlorocebus aethiops , Edição de Genes , Genoma Viral , Humanos , Imunidade , Mesocricetus , Mutação , Pandemias/prevenção & controle , Vacinas Atenuadas , Células Vero , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA