Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Appl Opt ; 61(5): B345-B355, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35201158

RESUMO

We present a new method to achieve autofocus in digital holographic microscopy. The method is based on inserting calibrated objects into a sample placed on a slide. Reconstructing a hologram using the inverse problems approach makes it possible to precisely locate and measure the inserted objects and thereby derive the slide plane location. Numerical focusing can then be performed in a plane at any chosen distance from the slide plane of the sample in a reproducible manner and independently of the diversity of the objects in the sample.

2.
Opt Express ; 26(19): 24881-24903, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469598

RESUMO

Laser scanning microscopy is limited in lateral resolution by the diffraction of light. Superresolution methods have been developed since the 90s to overcome this limitation. However superresolution is generally achieved at the expense of a greater complexity (high power lasers, very long acquisition times, specific fluorophores) and limitations on the observable samples. In this paper we propose a method to improve the resolution of confocal microscopy by combining different laser modes and deconvolution. Two images of the same field are acquired with the confocal microscope using different laser modes and used as inputs to a deconvolution algorithm. The two laser modes have different Point Spread Functions and thus provide complementary information leading to an image with enhanced resolution compared to using a single confocal image as input to the same deconvolution algorithm. By changing the laser modes to Bessel-Gauss beams we were able to further improve the efficiency of the deconvolution algorithm and obtain images with a residual Point Spread Function having a width of 0.14 λ (72 nm at a wavelength of 532 nm). This method only requires a laser scanning microscope and is not dependent on certain specific properties of fluorescent proteins. The proposed method requires only a few add-ons to classical confocal or two-photon microscopes and can easily be retrofitted into an existing commercial laser scanning microscope.

3.
Opt Express ; 25(3): 2162-2177, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519064

RESUMO

Laser scanning microscopy is limited in lateral resolution by the diffraction of light. We show that we can obtain twenty percent improvement in the resolution of confocal microscopy using Bessel-Gauss beams with the right pinhole size compared to conventional Gaussian beam based confocal microscopy. Advantages of this strategy include simplicity of installation and use, linear polarization compatibility, possibility to combine it with other resolution enhancement and superresolution strategies. We demonstrate the resolution enhancement capabilities of Bessel-Gauss beams both theoretically and experimentally on nano-spheres and biological tissue samples without any residual artifacts coming from the Bessel-Gauss beam side lobes with a resolution of 0.39λ. We also show that the resolution enhancement of Bessel-Gauss beams yields a better statistical colocalization analysis with fewer false positive results than when using Gaussian beams. We have also used Bessel-Gauss beams of different orders to further improve the resolution by combining them in SLAM microscopy (Switching LAser Modes : Dehez, Optics Express, 2013) achieving a resolution of 0.2λ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA