Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 357: 142091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648987

RESUMO

The two trace elements cobalt (Co) and nickel (Ni) are widely distributed in the environment due to the increasing industrial application, for example in lithium-ion batteries. Both metals are known to cause detrimental health impacts to humans when overexposed and both are supposed to be a risk factor for various diseases. The individual toxicity of Co and Ni has been partially investigated, however the underlying mechanisms, as well as the interactions of both remain unknown. In this study, we focused on the treatment of liver carcinoma (HepG2) and astrocytoma (CCF-STTG1) cells as a model for the target sites of these two metals. We investigated their effects in single and combined exposure on cell survival, cell death mechanisms, bioavailability, and the induction of oxidative stress. The combination of CoCl2 and NiCl2 resulted in higher Co levels with subsequent decreased amount of Ni compared to the individual treatment. Only CoCl2 and the combination of both metals led to RONS induction and increased GSSG formation, while apoptosis and necrosis seem to be involved in the cell death mechanisms of both CoCl2 and NiCl2. Collectively, this study demonstrates cell-type specific toxicity, with HepG2 representing the more sensitive cell line. Importantly, combined exposure to CoCl2 and NiCl2 is more toxic than single exposure, which may originate partly from the respective cellular Co and Ni content. Our data imply that the major mechanism of joint toxicity is associated with oxidative stress. More studies are needed to assess toxicity after combined exposure to elements such as Co and Ni to advance an improved hazard prediction for less artificial and more real-life exposure scenarios.


Assuntos
Sobrevivência Celular , Cobalto , Fígado , Níquel , Estresse Oxidativo , Cobalto/toxicidade , Humanos , Níquel/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Células Hep G2 , Fígado/efeitos dos fármacos , Fígado/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Disponibilidade Biológica , Linhagem Celular Tumoral
2.
Redox Biol ; 75: 103290, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39088892

RESUMO

Cobalt (Co) and Nickel (Ni) are used nowadays in various industrial applications like lithium-ion batteries, raising concerns about their environmental release and public health threats. Both metals are potentially carcinogenic and may cause neurological and cardiovascular dysfunctions, though underlying toxicity mechanisms have to be further elucidated. This study employs untargeted transcriptomics to analyze downstream cellular effects of individual and combined Co and Ni toxicity in human liver carcinoma cells (HepG2). The results reveal a synergistic effect of Co and Ni, leading to significantly higher number of differentially expressed genes (DEGs) compared to individual exposure. There was a clear enrichment of Nrf2 regulated genes linked to pathways such as glycolysis, iron and glutathione metabolism, and sphingolipid metabolism, confirmed by targeted analysis. Co and Ni exposure alone and combined caused nuclear Nrf2 translocation, while only combined exposure significantly affects iron and glutathione metabolism, evidenced by upregulation of HMOX-1 and iron storage protein FTL. Both metals impact sphingolipid metabolism, increasing dihydroceramide levels and decreasing ceramides, sphingosine and lactosylceramides, along with diacylglycerol accumulation. By combining transcriptomics and analytical methods, this study provides valuable insights into molecular mechanisms of Co and Ni toxicity, paving the way for further understanding of metal stress.

3.
Mol Nutr Food Res ; 67(6): e2200283, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36683243

RESUMO

SCOPE: Despite their essentiality, several studies have shown that either manganese (Mn) or zinc (Zn) overexposure may lead to detrimental health effects. Although Mn is transported by some of the SLC family transporters that translocate Zn, the role of Zn in hepatocellular Mn transport and Mn-induced toxicity have yet to be fully characterized. METHODS AND RESULTS: The human hepatoma cell line, HepG2, is utilized. Total cellular Mn and Zn amounts are determined after cells are treated with Zn 2 or 24 h prior to Mn incubation for additional 24 h with inductively coupled plasma-based spectrometry and labile Zn is assessed with the fluorescent probe FluoZin-3. Furthermore, mRNA expression of genes involved in metal homeostasis, and mechanistic endpoints associated with Mn-induced cytotoxicity are addressed. These results suggest that Zn protects against Mn-induced cytotoxicity and impacts Mn bioavailability to a great extent when cells are preincubated with higher Zn concentrations for longer duration as characterized by decreased activation of caspase-3 as well as lactate dehydrogenase (LDH) release. CONCLUSIONS: Zn protects against Mn-induced cytotoxicity in HepG2 cells possibly due to decreased Mn bioavailability. Additionally, mRNA expression of metal homeostasis-related genes indicates possible underlying pathways that should to be addressed in future studies.


Assuntos
Manganês , Zinco , Humanos , Manganês/toxicidade , Zinco/farmacologia , Zinco/metabolismo , Disponibilidade Biológica , Células Hep G2 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Chemosphere ; 345: 140434, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865207

RESUMO

Cobalt (Co) and Nickel (Ni) are increasingly found in our environment. We analysed their combined toxicity and uptake mechanisms in the early food chain by studying bacteria and the bacterivorous ciliate Paramecium as a primary consumer. We exposed both species to these metals to measure the toxicity, uptake and transfer of metals from bacteria to Paramecium. We found that Ni is more toxic than Co, and that toxicity increases for both metals when (i) food bacteria are absent and (ii) both metals are applied in combination. The cellular content in bacteria after exposure shows a concentration dependent bias for either Ni or Co. Comparing single treatment and joint exposure, bacteria show increased levels of both metals when these are both exposed. To imitate the basic level of the food chain, we fed these bacteria to paramecia. The cellular content shows a similar ratio of Nickel and Cobalt as in food bacteria. This is different to the direct application of both metals to paramecia, where Cobalt is enriched over Nickel. This indicates that bacteria can selectively pre-accumulate metals for introduction into the food chain. We also analysed the transcriptomic response of Paramecium to sublethal doses of Nickel and Cobalt to gain insight into their toxicity mechanisms. Gene ontology (GO) analysis indicates common deregulated pathways, such as ammonium transmembrane transport and ubiquitine-associated protein degradation. Many redox-related genes also show deregulation of gene expression, indicating cellular adaptation to increased RONS stress. This suggests that both metals may also target the same cellular pathways and this is consistent with the increased toxicity of both metals when used together. Our data reveal complex ecotoxicological pathways for these metals and highlights the different parameters for their fate in the ecosystem, in the food chain and their ecotoxicological risk after environmental contamination.


Assuntos
Níquel , Paramecium , Níquel/análise , Cobalto/análise , Ecossistema , Paramecium/metabolismo , Metais , Bactérias/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-37209457

RESUMO

Alterations in reduced and oxidized glutathione (GSH/GSSG) levels represent an important marker for oxidative stress and potential disease progression in toxicological research. Since GSH can be oxidized rapidly, using a stable and reliable method for sample preparation and GSH/GSSG quantification is essential to obtain reproducible data. Here we describe an optimised sample processing combined with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, validated for different biological matrices (lysates from HepG2 cells, C. elegans, and mouse liver tissue). To avoid autoxidation of GSH, samples were treated with the thiol-masking agent N-ethylmaleimide (NEM) and sulfosalicylic acid (SSA) in a single step. With an analysis time of 5 min, the developed LC-MS/MS method offers simultaneous determination of GSH and GSSG at high sample throughput with high sensitivity. This is especially interesting with respect of screening for oxidative and protective properties of substances in in vitro and in vivo models, e.g. C. elegans. In addition to method validation parameters (linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, interday, intraday), we verified the method by using menadione and L-buthionine-(S,R)-sulfoximine (BSO) as well established modulators of cellular GSH and GSSG concentrations. Thereby menadione proved to be a reliable positive control also in C. elegans.


Assuntos
Glutationa , Espectrometria de Massas em Tandem , Camundongos , Animais , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Vitamina K 3/análise , Caenorhabditis elegans/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA