Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Phys Chem Chem Phys ; 25(34): 22913-22919, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37591824

RESUMO

This article explores the organization and interactions of Disperse Orange 3 (DO3) hydrophobic dye molecules within hybrid organic-inorganic imogolite nanotubes. In pure water, the DO3 dye molecules self assemble into large insoluble 2D nanosheets whose structure is also explored by molecular dynamics simulations. The dye molecules are however efficiently solubilized in the presence of hybrid imogolite nanotubes. The filling of the internal hydrophobic cavity of the nanotubes is quantified. The organization of the molecules inside the nanotube is probed using the polarization resolved second harmonic scattering (SHS) technique coupled with simulation. At the highest loading, the dyes fill the nanotube with their principal axis parallel to the nanotube walls showing a strong SHS signal due to this encapsulation.

2.
Environ Sci Technol ; 56(23): 16831-16837, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36394535

RESUMO

Nanosized zinc sulfides (nano-ZnS) have size-dependent and tunable physical and chemical properties that make them useful for a variety of technological applications. For example, structural changes, especially caused by strain, are pronounced in nano-ZnS < 5 nm in size, the size range typical of incidental nano-ZnS that form in the environment. Previous research has shown how natural organic matter impacts the physical properties of nano-ZnS but was mostly focused on their aggregation state. However, the specific organic molecules and the type of functional groups that are most important for controlling the nano-ZnS size and strain remain unclear. This study examined the size-dependent strain of nano-ZnS synthesized in the presence of serine, cysteine, glutathione, histidine, and acetate. Synchrotron total scattering pair distribution function analysis was used to determine the average crystallite size and strain. Among the different organic molecules tested, those containing a thiol group were shown to affect the particle size and size-induced strain most strongly when added during synthesis but significantly reduced the particle strain when added to as-formed nano-ZnS. The same effects are useful to understand the properties and behavior of natural nano-ZnS formed as products of microbial activity, for example, in reducing environments, or of incidental nano-ZnS formed in organic wastes.


Assuntos
Nanopartículas , Compostos de Zinco , Compostos de Zinco/análise , Compostos de Zinco/química , Sulfetos/química , Nanopartículas/química , Tamanho da Partícula
3.
Langmuir ; 35(11): 4068-4076, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30793904

RESUMO

The phosphonic acid moiety is commonly used as an anchoring group for the surface modification of imogolite. However, the impact of the reaction on its structure has never been clearly analyzed before. We study the reaction of imogolite and decylphosphonic acid by combining infrared spectroscopy, X-ray scattering, scanning electron microscopy, transmission electron microscopy, and solid-state nuclear magnetic resonance spectroscopy. Instead of a surface functionalization, we observe the formation of a lamellar phase interconnected with imogolite bundles. Although we find no evidence for grafted imogolite tubes, we observe the expected dispersion characteristics and stabilization of water in toluene emulsions described in the literature. Based on the surface chemistry of imogolite, we propose an explanation for the observed reactivity and link the structural features of the obtained composite material to its dispersibility in toluene and its observed properties at the toluene-water interface.

4.
Langmuir ; 35(33): 10831-10837, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31333024

RESUMO

Protein adsorption on a surface is generally evaluated in terms of the evolution of the proteins' structures and functions. However, when the surface is that of a nanoparticle, the protein corona formed around it possesses a particular supramolecular structure that gives a "biological identity" to the new object. Little is known about the actual shape of the protein corona. Here, the protein corona formed by the adsorption of model proteins (myoglobin and hemoglobin) on silica nanoparticles was studied. Small-angle neutron scattering and oxygenation studies were combined to assess both the structural and functional impacts of the adsorption on proteins. Large differences in the oxygenation properties could be found while no significant global shape changes were seen after adsorption. Moreover, the structural study showed that the adsorbed proteins form an organized yet discontinuous monolayer around the nanoparticles.


Assuntos
Hemoglobinas/química , Mioglobina/química , Nanopartículas/química , Coroa de Proteína/química , Dióxido de Silício/química , Animais , Cavalos
5.
Langmuir ; 34(44): 13225-13234, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30296100

RESUMO

Hybrid imogolite aluminosilicate nanotubes with methylated internal surface can be obtained by introduction of the corresponding organosilane during their synthesis. However, similarly to pristine imogolite, a number of side products, including proto-imogolite (open-imoLS), allophanes, and aluminum hydroxides, are formed, which ultimately impact on the properties of the dispersions. In order to minimize the proportion of these side products, we have here systematically explored the impact of the initial Si/Al ratio on the content of hybrid imogolite dispersions before and after dialysis. By combining cryo-transmission electron microscopy, inductively coupled plasma mass spectrometry, infrared spectroscopy, and small-angle X-ray scattering, we evidenced that the Si/Al ratio has a large impact on the formation of aluminum hydroxides that can be minimized with a slight excess of Si precursor. However, a large excess of Si is detrimental to the reaction yield leading to an important proportion of proto-imogolite. We propose that the optimal Si/Al ratio of ca. 0.6 can both minimize the proportion of aluminum hydroxides and proto-imogolite. These results suggest that the dynamic and therefore reactive character of imogolite dispersions may have been so far underlooked.

6.
Soft Matter ; 12(3): 900-4, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26549639

RESUMO

We study the stability of a model Pickering emulsion system using fluorinated oil and functionalized silica nanoparticles. A special counter-flow microfluidic set-up was used to prepare monodisperse oil droplets in water. The wettability of the monodisperse silica nanoparticles (NPs) could be tuned by surface grafting and the surface coverage of the droplets was controlled using the microfluidic setup. For surface coverage as low as 23%, we observed a regime of Pickering emulsion stability where the surface coverage of emulsion droplets of constant size increases with time, coexisting with an excess of oil phase. Our results demonstrate that the previously observed limited coalescence regime where surface coverage tends to control the average size of the final droplets must be put in a broader perspective.

7.
Environ Sci Technol ; 48(18): 10690-8, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25127331

RESUMO

The heteroaggregation of engineered nanoparticles (ENPs) with natural colloids (NCs), which are ubiquitous in natural surface waters, is a crucial process affecting the environmental transport and fate of ENPs. Attachment efficiencies for heteroaggregation, α hetero, are required as input parameters in environmental fate models to predict ENP concentrations and contribute to ENP risk assessment. Here, we present a novel method for determining α hetero values by using a combination of laser diffraction measurements and aggregation modeling based on the Smoluchowski equation. Titanium dioxide nanoparticles (TiO2 NPs, 15 nm) were used to demonstrate this new approach together with larger silicon dioxide particles (SiO2, 0.5 µm) representing NCs. Heteroaggregation experiments were performed at different environmentally relevant solution conditions. At pH 5 the TiO2 NPs and the SiO2 particles are of opposite charge, resulting in α hetero values close to 1. At pH 8, where all particles are negatively charged, α hetero was strongly affected by the solution conditions, with α hetero ranging from <0.001 at low ionic strength to 1 at conditions with high NaCl or CaCl2 concentrations. The presence of humic acid stabilized the system against heteroaggregation.


Assuntos
Coloides/química , Meio Ambiente , Modelos Teóricos , Nanopartículas/química , Titânio/química , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Cinética , Rios/química , Dióxido de Silício/química , Soluções , Água/química
8.
Part Fibre Toxicol ; 11: 67, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25497478

RESUMO

BACKGROUND: Ge-imogolites are short aluminogermanate tubular nanomaterials with attractive prospected industrial applications. In view of their nano-scale dimensions and high aspect ratio, they should be examined for their potential to cause respiratory toxicity. Here, we evaluated the respiratory biopersistence and lung toxicity of 2 samples of nanometer-long Ge-imogolites. METHODS: Rats were intra-tracheally instilled with single wall (SW, 70 nm length) or double wall (DW, 62 nm length) Ge-imogolites (0.02-2 mg/rat), as well as with crocidolite and the hard metal particles WC-Co, as positive controls. The biopersistence of Ge-imogolites and their localization in the lung were assessed by ICP-MS, X-ray fluorescence, absorption spectroscopy and computed micro-tomography. Acute inflammation and genotoxicity (micronuclei in isolated type II pneumocytes) was assessed 3 d post-exposure; chronic inflammation and fibrosis after 2 m. RESULTS: Cytotoxic and inflammatory responses were shown in bronchoalveolar lavage 3 d after instillation with Ge-imogolites. Sixty days after exposure, a persistent dose-dependent inflammation was still observed. Total lung collagen, reflected by hydroxyproline lung content, was increased after SW and DW Ge-imogolites. Histology revealed lung fibre reorganization and accumulation in granulomas with epithelioid cells and foamy macrophages and thickening of the alveolar walls. Overall, the inflammatory and fibrotic responses induced by SW and DW Ge-imogolites were more severe (on a mass dose basis) than those induced by crocidolite. A persistent fraction of Ge-imogolites (15% of initial dose) was mostly detected as intact structures in rat lungs 2 m after instillation and was localized in fibrotic alveolar areas. In vivo induction of micronuclei was significantly increased 3 d after SW and DW Ge-imogolite instillation at non-inflammatory doses, indicating the contribution of primary genotoxicity. CONCLUSIONS: We showed that nm-long Ge-imogolites persist in the lung and promote genotoxicity, sustained inflammation and fibrosis, indicating that short high aspect ratio nanomaterials should not be considered as innocuous materials. Our data also suggest that Ge-imogolite structure and external surface determine their toxic activity.


Assuntos
Silicatos de Alumínio/toxicidade , Germânio/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Pneumonia/induzido quimicamente , Fibrose Pulmonar/etiologia , Poluentes Atmosféricos/química , Poluentes Atmosféricos/toxicidade , Silicatos de Alumínio/administração & dosagem , Silicatos de Alumínio/química , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Germânio/administração & dosagem , Germânio/química , Pulmão/imunologia , Pulmão/patologia , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Nanotubos/química , Nanotubos/toxicidade , Tamanho da Partícula , Pneumonia/imunologia , Pneumonia/patologia , Ratos Wistar , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Absorção pelo Trato Respiratório , Distribuição Tecidual , Testes de Toxicidade Aguda , Toxicocinética
9.
Angew Chem Int Ed Engl ; 52(42): 11068-72, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24009068

RESUMO

Different shapes: Tetravalent, hexavalent, and dodecavalent silica particles were obtained by the growth of the silica core of binary tetrapods, hexapods, and dodecapods, respectively. The surface of the multivalent particles can be regioselectively functionalized, thereby leading to particles with anisotropic geometry and chemistry.

10.
J Colloid Interface Sci ; 647: 478-487, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37271092

RESUMO

HYPOTHESIS: In the field of Pickering emulsion, original inside/ouside Janus clays nanoparticles are investigated for their emulsification properties. Imogolite is a tubular nanomineral of the clay family having both inner and outer hydrophilic surfaces. A Janus version of this nanomineral with an inner surface fully covered by methyl groups can be obtained directly by synthesis (Imo-CH3, hybrid imogolite). The hydrophilic/hydrophobic duality of the Janus Imo-CH3 allows the nanotubes to be dispersed in an aqueous suspension and enables emulsification of non-polar compounds due to the hydrophobic inner cavity of the nanotube. EXPERIMENTS: Through the combination of Small Angle X-ray Scattering (SAXS), interfacial observations and rheology, the stabilization mechanism of imo-CH3 in oil-water emulsions has been investigated. FINDINGS: Here, we show that interfacial stabilization of an oil-in-water emulsion is rapidly obtained at a critical Imo-CH3 concentration as low as 0.6 wt%. Below this concentration threshold, no arrested coalescence is observed, and excess oil is expelled from the emulsion through a cascading coalescence mechanism. The stability of the emulsion above the concentration threshold is reinforced by an evolving interfacial solid layer resulting from the aggregation of Imo-CH3 nanotubes that is triggered by the penetration of confined oil front into the continuous phase.

11.
Nanoscale ; 15(8): 4101-4113, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36744934

RESUMO

Hybrid aluminosilicate nanotubes (Imo-CH3) have the ability to trap small organic molecules inside their hydrophobic internal cavity while being dispersed in water owing to their hydrophilic external surface. They also display a curvature-induced polarization of their wall, which favors reduction outside the nanotubes and oxidation inside. Here, we coupled bare plasmonic gold nanoparticles (GNPs) with Imo-CH3 and analyzed for the first time the redox reactivity of these hybrid nano-reactors upon UV illumination. We show that the coupling between GNPs and Imo-CH3 significantly enhances the nanotube photocatalytic activity, with a large part of water reduction occurring directly on the gold surface. The coupling mechanism strongly influences the initial H2 production rate, which can go from ×10 to more than ×90 as compared to bare Imo-CH3 depending on the synthesis route of the GNPs. The present results show that this hybrid photocatalytic nano-reactor benefits from a synergy of polarization and confinement effects that facilitate efficient H2 production.

12.
J Am Chem Soc ; 134(8): 3780-6, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22296596

RESUMO

It is known that silicon can be successfully replaced by germanium atoms in the synthesis of imogolite nanotubes, leading to shorter and larger AlGe nanotubes. Beside the change in morphology, two characteristics of the AlGe nanotube synthesis were recently discovered. AlGe imogolite nanotubes can be synthesized at much higher concentrations than AlSi imogolite. AlGe imogolite exists in the form of both single-walled (SW) and double-walled (DW) nanotubes, whereas DW AlSi imogolites have never been observed. In this article, we give details on the physicochemical control over the SW or DW AlGe imogolite structure. For some conditions, an almost 100% yield of SW or DW nanotubes is demonstrated. We propose a model for the formation of SW or DW AlGe imogolite, which also explains why DW AlSi imogolites or higher wall numbers for AlGe imogolite are not likely to be formed.


Assuntos
Alumínio/química , Germânio/química , Nanotubos/química , Silicatos de Alumínio/química , Físico-Química , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
13.
Chem Res Toxicol ; 25(11): 2513-22, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-22989002

RESUMO

Physical-chemical parameters such as purity, structure, chemistry, length, and aspect ratio of nanoparticles (NPs) are linked to their toxicity. Here, synthetic imogolite-like nanotubes with a set chemical composition but various sizes and shapes were used as models to investigate the influence of these physical parameters on the cyto- and genotoxicity and cellular uptake of NPs. The NPs were characterized using X-ray diffraction (XRD), small angle X-ray scattering (SAXS), and atomic force microscopy (AFM). Imogolite precursors (PR, ca. 5 nm curved platelets), as well as short tubes (ST, ca. 6 nm) and long tubes (LT, ca. 50 nm), remained stable in the cell culture medium. Internalization into human fibroblasts was observed only for the small particles PR and ST. None of the tested particles induced a significant cytotoxicity up to a concentration of 10(-1) mg·mL(-1). However, small sized NPs (PR and ST) were found to be genotoxic at very low concentration 10(-6) mg·mL(-1), while LT particles exhibited a weak genotoxicity. Our results indicate that small size NPs (PR, ST) were able to induce primary lesions of DNA at very low concentrations and that this DNA damage was exclusively induced by oxidative stress. The higher aspect ratio LT particles exhibited a weaker genotoxicity, where oxidative stress is a minor factor, and the likely involvement of other mechanisms. Moreover, a relationship among cell uptake, particle aspect ratio, and DNA damage of NPs was observed.


Assuntos
Alumínio/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Germânio/farmacologia , Nanotubos/química , Alumínio/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dano ao DNA , Relação Dose-Resposta a Droga , Fibroblastos/citologia , Germânio/química , Humanos , Tamanho da Partícula , Relação Estrutura-Atividade
14.
Langmuir ; 28(14): 6163-74, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22416940

RESUMO

Stable methyl methacrylate (MMA) miniemulsions were successfully prepared using for the first time cerium oxide (CeO(2)) nanoparticles as solid stabilizers in the absence of any molecular surfactant. The interaction between MMA droplets and CeO(2) nanoparticles was induced by the use of methacrylic acid (MAA) as a comonomer. Both MAA and CeO(2) contents played a key role on the diameter and the stability of the droplets formed during the emulsification step. Cryo-transmission electron microscopy (TEM) images of the suspensions formed with 35 wt % of CeO(2) showed the presence of polydisperse 50-150 nm spherical droplets. More surprisingly, some nonspherical (likely discoidal) objects that could be the result of the sonication step were also observed. The subsequent polymerization of these Pickering miniemulsion droplets led to the formation of composite PMMA latex particles armored with CeO(2). In all cases, the conversion was limited to ca. 85%, concomitant with a loss of stability of the latex for CeO(2) contents lower than 35 wt %. This stability issues were likely related to the screening of the cationic charges present on CeO(2) nanoparticles upon polymerization. TEM images showed mostly spherical particles with a diameter ranging from 100 to 400 nm and homogeneously covered with CeO(2). Besides, for particles typically larger than 200 nm, a buckled morphology was observed supporting the presence of residual monomer at the end of the polymerization and consistent with the limited conversion. The versatility of these systems was further demonstrated using 35 wt % of CeO(2) and replacing MMA by n-butyl acrylate (BA) either alone or in combination with MMA. Stable monomer emulsions were always obtained, with the droplet size increasing with the hydrophobicity of the oil phase, pointing out the key influence of the wettability of the solid stabilizer. The polymerization of Pickering miniemulsion stabilized by CeO(2) nanoparticles proved to be an efficient strategy to form armored composite latex particles which may find applications in coating technology.

15.
Langmuir ; 28(31): 11575-83, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22775494

RESUMO

Through the heterogeneous nucleation of polymer nodules on a surface-modified silica particle, the high-yield achievement of hybrid colloidal molecules with a well-controlled multipod-like morphology was recently demonstrated. However, as the formation mechanism of these colloidal molecules has not been completely understood yet, some opportunities remain to reduce the tedious empirical process needed to optimize the chemical recipes. In this work, we propose a model to help understand the formation mechanism of almost pure suspensions of well-defined colloidal molecules. The outcomes of the model allow proposing probable nucleation growth scenario able to explain the experimental results. Such a model should make easier the determination of the optimal recipe parameters for a targeted morphology. The reasonably good agreements between the model and the experimental results show that the most important processes have been captured. It is thus a first step toward the rational design of large quantities of chemically prepared colloidal molecules.

16.
Langmuir ; 27(20): 12304-11, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21888387

RESUMO

The first stages of the nucleation and growth of silica nanoparticles are followed in situ using both SAXS and Raman spectroscopy. Coupling these two techniques allows the determination of the fractions of soluble and solid silica as a function of the reaction time. SAXS also enables demonstrating that major modifications of the structure occur after the initial precipitation period, inducing an increase of the precipitate density. These structural modifications have important implications in the initial nucleation growth stages, which have never been introduced either in classical models or in more recent kinetic nucleation theories. Such restructuration stages could contribute to explain the monodispersity of the obtained silica nanoparticles that is not predicted by classical models.

20.
Phys Chem Chem Phys ; 13(7): 2682-9, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21152518

RESUMO

Atomic Force Microscopy (AFM) and in situ Small Angle X-ray Scattering (SAXS) were used to investigate the evolution of the aluminogermanate imogolite-like nanotubes concentration and morphology during their synthesis. In particular, in situ SAXS allowed quantifying the transformation of protoimogolite into nanotubes. The size distribution of the final nanotubes was also assessed after growth by AFM. A particular attention was focused on the determination of the single and double walled nanotube length distributions. We observed that the two nanotube types do not grow with the same kinetic and that their final length distribution was different. A model of protoimogolites oriented aggregation was constructed to account for the experimental growth kinetic and the length distribution differences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA