Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37108512

RESUMO

Drought is one of the most serious abiotic stressors in the environment, restricting agricultural production by reducing plant growth, development, and productivity. To investigate such a complex and multifaceted stressor and its effects on plants, a systems biology-based approach is necessitated, entailing the generation of co-expression networks, identification of high-priority transcription factors (TFs), dynamic mathematical modeling, and computational simulations. Here, we studied a high-resolution drought transcriptome of Arabidopsis. We identified distinct temporal transcriptional signatures and demonstrated the involvement of specific biological pathways. Generation of a large-scale co-expression network followed by network centrality analyses identified 117 TFs that possess critical properties of hubs, bottlenecks, and high clustering coefficient nodes. Dynamic transcriptional regulatory modeling of integrated TF targets and transcriptome datasets uncovered major transcriptional events during the course of drought stress. Mathematical transcriptional simulations allowed us to ascertain the activation status of major TFs, as well as the transcriptional intensity and amplitude of their target genes. Finally, we validated our predictions by providing experimental evidence of gene expression under drought stress for a set of four TFs and their major target genes using qRT-PCR. Taken together, we provided a systems-level perspective on the dynamic transcriptional regulation during drought stress in Arabidopsis and uncovered numerous novel TFs that could potentially be used in future genetic crop engineering programs.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Redes Reguladoras de Genes , Secas , Fatores de Transcrição/metabolismo , Biologia de Sistemas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
2.
Trends Plant Sci ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39138088

RESUMO

Climate change threatens global agriculture, impacting plant health and crop yield, while plant microbiomes offer potential solutions to enhance resilience. In this forum, we discuss the prospects of single cell multiome and network science in understanding intricate plant-microbe interactions, providing insights for sustainable agriculture and improved crop productivity for global food security.

3.
Biomolecules ; 14(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38927032

RESUMO

Duckweed (Lemnaceae) rises as a crucial model system due to its unique characteristics and wide-ranging utility. The significance of physiological research and phytoremediation highlights the intricate potential of duckweed in the current era of plant biology. Special attention to duckweed has been brought due to its distinctive features of nutrient uptake, ion transport dynamics, detoxification, intricate signaling, and stress tolerance. In addition, duckweed can alleviate environmental pollutants and enhance sustainability by participating in bioremediation processes and wastewater treatment. Furthermore, insights into the genomic complexity of Lemnaceae species and the flourishing field of transgenic development highlight the opportunities for genetic manipulation and biotechnological innovations. Novel methods for the germplasm conservation of duckweed can be adopted to preserve genetic diversity for future research endeavors and breeding programs. This review centers around prospects in duckweed research promoting interdisciplinary collaborations and technological advancements to drive its full potential as a model organism.


Assuntos
Araceae , Biodegradação Ambiental , Araceae/genética , Araceae/metabolismo , Modelos Biológicos
4.
Trends Biotechnol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908942

RESUMO

Extrachromosomal circular DNA (eccDNA) is genetic material that exists outside of chromosomes and holds potential for next-generation genetic engineering in plant biology. By improving plant resilience, growth, and productivity, eccDNA offers a promising solution to global challenges in food security and environmental sustainability, making this a transformative era in agricultural biotechnology.

5.
Methods Mol Biol ; 2690: 9-22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450133

RESUMO

Protein-protein interaction mapping has gained immense importance in understanding protein functions in diverse biological pathways. There are various in vivo and in vitro techniques associated with the protein-protein interaction studies but generally, the focus is confined to understanding the protein interaction in the nucleus of the cell, and thus it limits the availability to explore protein interactions that are happening in the cytoplasm of the cell. Since posttranslational modification is a crucial step in signaling pathways and cellular protein interactions harnessing the cytoplasmic protein and evaluating the interaction in the cytoplasm, this protocol will provide more information about studying these types of protein interactions. Cytotrap is a type of yeast-two-hybrid system that differs in its ability to anchor along the membrane, thus directing the protein of interest to anchor along the membrane through the myristoylation signaling unit. The vector containing the target protein contains the myristoylation unit, called the prey, and the bait unit contains the protein of interest as a fusion with the hSos protein. In an event of interaction between the target and the protein of interest, the hSos protein unit will be localized to the membrane and the GDP/GTP exchange unit will trigger the activation of the Ras pathway that leads to the survival of the temperature-sensitive yeast strain at a higher temperature.


Assuntos
Proteínas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Técnicas do Sistema de Duplo-Híbrido , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA