RESUMO
Bulk-tissue DNA methylomes represent an average over many different cell types, hampering our understanding of cell-type-specific contributions to disease development. As single-cell methylomics is not scalable to large cohorts of individuals, cost-effective computational solutions are needed, yet current methods are limited to tissues such as blood. Here we leverage the high-resolution nature of tissue-specific single-cell RNA-sequencing datasets to construct a DNA methylation atlas defined for 13 solid tissue types and 40 cell types. We comprehensively validate this atlas in independent bulk and single-nucleus DNA methylation datasets. We demonstrate that it correctly predicts the cell of origin of diverse cancer types and discovers new prognostic associations in olfactory neuroblastoma and stage 2 melanoma. In brain, the atlas predicts a neuronal origin for schizophrenia, with neuron-specific differential DNA methylation enriched for corresponding genome-wide association study risk loci. In summary, the DNA methylation atlas enables the decomposition of 13 different human tissue types at a high cellular resolution, paving the way for an improved interpretation of epigenetic data.
Assuntos
Metilação de DNA , Epigenoma , Ilhas de CpG , Epigênese Genética , Epigenômica , Estudo de Associação Genômica Ampla , Humanos , Neurônios/metabolismoRESUMO
INTRODUCTION: Small intestinal neuroendocrine tumours (siNETs) are rare neoplasms which present with low mutational burden and can be subtyped based on copy number variation (CNV). Currently, siNETs can be molecularly classified as having chromosome 18 loss of heterozygosity (18LOH), multiple CNVs (MultiCNV), or no CNVs. 18LOH tumours have better progression-free survival when compared to MultiCNV and NoCNV tumours, however, the mechanism underlying this is unknown, and clinical practice does not currently consider CNV status. METHODS: Here, we use genome-wide tumour DNA methylation (n = 54) and gene expression (n = 20 matched to DNA methylation) to better understand how gene regulation varies by 18LOH status. We then use multiple cell deconvolution methods to analyse how cell composition varies between 18LOH status and determine potential associations with progression-free survival. RESULTS: We identified 27,464 differentially methylated CpG sites and 12 differentially expressed genes between 18LOH and non-18LOH (MultiCNV + NoCNV) siNETs. Although few differentially expressed genes were identified, these genes were highly enriched with the differentially methylated CpG sites compared to the rest of the genome. We identified differences in tumour microenvironment between 18LOH and non-18LOH tumours, including CD14+ infiltration in a subset of non-18LOH tumours which had the poorest clinical outcomes. CONCLUSIONS: We identify a small number of genes which appear to be linked to the 18LOH status of siNETs, and find evidence of potential epigenetic dysregulation of these genes. We also find a potential prognostic marker for worse progression-free outcomes in the form of higher CD14 infiltration in non-18LOH siNETs.
Assuntos
Neoplasias Intestinais , Tumores Neuroendócrinos , Humanos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Multiômica , Variações do Número de Cópias de DNA/genética , Cromossomos Humanos Par 18 , Neoplasias Intestinais/genética , Metilação de DNA/genética , Perda de Heterozigosidade/genética , Microambiente TumoralRESUMO
BACKGROUND: Prostate cancer is highly heritable, with >250 common variants associated in genome-wide association studies. It commonly presents with non-specific lower urinary tract symptoms that are frequently associated with benign conditions. METHODS: Cohort study using UK Biobank data linked to primary care records. Participants were men with a record showing a general practice consultation for a lower urinary tract symptom. The outcome measure was prostate cancer diagnosis within 2 years of consultation. The predictor was a genetic risk score of 269 genetic variants for prostate cancer. RESULTS: A genetic risk score (GRS) is associated with prostate cancer in symptomatic men (OR per SD increase = 2.12 [1.86-2.41] P = 3.5e-30). An integrated risk model including age and GRS applied to symptomatic men predicted prostate cancer (AUC 0.768 [0.739-0.796]). Prostate cancer incidence was 8.1% (6.7-9.7) in the highest risk quintile. In the lowest quintile, prostate cancer incidence was <1%. CONCLUSIONS: This study is the first to apply GRS in primary care to improve the triage of symptomatic patients. Men with the lowest genetic risk of developing prostate cancer could safely avoid invasive investigation, whilst those identified with the greatest risk could be fast-tracked for further investigation. These results show that a GRS has potential application to improve the diagnostic pathway of symptomatic patients in primary care.
Assuntos
Sintomas do Trato Urinário Inferior , Neoplasias da Próstata , Bancos de Espécimes Biológicos , Estudos de Coortes , Estudo de Associação Genômica Ampla , Humanos , Sintomas do Trato Urinário Inferior/diagnóstico , Sintomas do Trato Urinário Inferior/epidemiologia , Sintomas do Trato Urinário Inferior/etiologia , Masculino , Atenção Primária à Saúde , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/genética , Fatores de Risco , Reino Unido/epidemiologiaRESUMO
Midgut neuroendocrine neoplasms (NENs) are one of the most common subtypes of NEN, and their incidence is rising globally. Despite being the most frequently diagnosed malignancy of the small intestine, little is known about their underlying molecular biology. Their unusually low mutational burden compared to other solid tumors and the unexplained occurrence of multifocal tumors makes the molecular biology of midgut NENs a particularly fascinating field of research. This review provides an overview of recent advances in the understanding of the interplay of the genetic, epigenetic, and transcriptomic landscape in the development of midgut NENs, a topic that is critical to understanding their biology and improving treatment options and outcomes for patients.
Assuntos
Neoplasias Intestinais , Tumores Neuroendócrinos , Humanos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Neoplasias Intestinais/genética , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Animais , Epigênese GenéticaRESUMO
BACKGROUND: People with cancer experience high rates of venous thromboembolism (VTE). Risk of subsequent cancer is also increased in people experiencing their first VTE. The causal mechanisms underlying this association are not completely understood, and it is unknown whether VTE is itself a risk factor for cancer. METHODS: We used data from large genome-wide association study meta-analyses to perform bidirectional Mendelian randomization analyses to estimate causal associations between genetic liability to VTE and risk of 18 different cancers. RESULTS: We found no conclusive evidence that genetic liability to VTE was causally associated with an increased incidence of cancer, or vice versa. We observed an association between liability to VTE and pancreatic cancer risk [odds ratio for pancreatic cancer: 1.23 (95% confidence interval: 1.08-1.40) per log-odds increase in VTE risk, P = 0.002]. However, sensitivity analyses revealed this association was predominantly driven by a variant proxying non-O blood group, with inadequate evidence to suggest a causal relationship. CONCLUSIONS: These findings do not support the hypothesis that genetic liability to VTE is a cause of cancer. Existing observational epidemiological associations between VTE and cancer are therefore more likely to be driven by pathophysiological changes which occur in the setting of active cancer and anti-cancer treatments. Further work is required to explore and synthesize evidence for these mechanisms.
Assuntos
Neoplasias Pancreáticas , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Fatores de Risco , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/genéticaRESUMO
Lung carcinoid tumours are neuroendocrine neoplasms originating from the bronchopulmonary tract's neuroendocrine cells, accounting for only 1%-3% of all lung cancers but 30% of all neuroendocrine tumours. The incidence of lung carcinoids, both typical and atypical, has been increasing over the years due to improved diagnostic methods and increased awareness among clinicians and pathologists. The most recent WHO classification includes a subgroup of lung carcinoids with atypical morphology and higher mitotic count and/or Ki67 labelling index. Despite appropriate surgery, the 5-year survival rate for atypical carcinoids barely exceeds 50%-70%. The role of adjuvant therapy in lung carcinoids is not well-defined, and clinical decisions are generally based on the presence of high-risk features. Long-term follow-up is essential to monitor for recurrence, although the optimal follow-up protocol remains unclear. To address the lack of consensus in clinical management decisions, the European Neuroendocrine Tumor Society (ENETS) initiated a survey among 20 expert centres. The survey identified varied opinions on approaches to imaging, surgery, use of adjuvant therapy, and follow-up protocols. Notably, the absence of dedicated multidisciplinary lung neuroendocrine tumour boards in some centres was evident. Experts agreed on the need for a prospective adjuvant trial in high-risk patients, emphasizing the feasibility of such a study. In conclusion, the study highlights the need for a more uniform adoption of existing guidelines in the management of lung carcinoid tumours and emphasizes the importance of international collaboration to advance research and patient care. Close collaboration between healthcare providers and patients is vital for effective long-term surveillance and management of these rare tumours.
Assuntos
Tumor Carcinoide , Neoplasias Pulmonares , Tumores Neuroendócrinos , Humanos , Tumor Carcinoide/terapia , Tumor Carcinoide/patologia , Tumor Carcinoide/diagnóstico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Tumores Neuroendócrinos/terapia , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/epidemiologia , Inquéritos e Questionários , Comitês Consultivos , Gerenciamento ClínicoRESUMO
Diabetes and cancer are two heterogenous diseases which are rapidly increasing in prevalence globally. A link between these two non-communicable diseases was first identified over 100 years ago; however, recent epidemiological studies and advances in genomic research have provided greater insight into the association between diabetes and cancer. Epidemiological studies have suggested that individuals with diabetes have an increased risk of several types of cancer (including liver, pancreas, colorectal, breast, and endometrial) and an increased risk of cancer mortality. However, this increased risk is not observed in all cancers, for example, there is a reduced risk of prostate cancer in individuals with diabetes. It has also been observed that cancer patients have an increased risk of developing diabetes, highlighting that the relationship between these diseases is not straightforward. Evidence of a shared genetic aetiology along with numerous lifestyle and clinical factors have made it challenging to establish if the relationship between the two diseases is causal or a result of confounding factors. This review takes a pan-cancer approach to highlight the complexities of the interactions between type 2 diabetes and cancer development, indicating where advances in genomic research have enabled a greater insight into these two diseases.
RESUMO
Background: People with cancer experience high rates of venous thromboembolism (VTE). Additionally, risk of subsequent cancer is increased in people experiencing their first VTE. The causal mechanisms underlying this association are not completely understood, and it is unknown whether VTE is itself a risk factor for cancer. Methods: We used data from large genome-wide association study meta-analyses to perform bi-directional Mendelian randomisation analyses to estimate causal associations between genetically-proxied lifetime risk of VTE and risk of 18 different cancers. Results: We found no conclusive evidence that genetically-proxied lifetime risk of VTE was causally associated with an increased incidence of cancer, or vice-versa. We observed an association between VTE and pancreatic cancer risk (odds ratio for pancreatic cancer 1.23 (95% confidence interval 1.08 - 1.40) per log-odds increase in risk of VTE, P = 0.002). However, sensitivity analyses revealed this association was predominantly driven by a variant proxying non-O blood group, with inadequate evidence from Mendelian randomisation to suggest a causal relationship. Conclusions: These findings do not support the hypothesis that genetically-proxied lifetime risk of VTE is a cause of cancer. Existing observational epidemiological associations between VTE and cancer are therefore more likely to be driven by pathophysiological changes which occur in the setting of active cancer and anti-cancer treatments. Further work is required to explore and synthesise evidence for these mechanisms.
RESUMO
BACKGROUND: Small intestinal neuroendocrine tumors (SI-NETs) are the most common neoplasms of the small bowel. The majority of tumors are located in the distal ileum with a high incidence of multiple synchronous primary tumors. Even though up to 50% of SI-NET patients are diagnosed with multifocal disease, the mechanisms underlying multiple synchronous lesions remain elusive. METHODS: We performed whole genome sequencing of 75 de-identified synchronous primary tumors, 15 metastases, and corresponding normal samples from 13 patients with multifocal ileal NETs to identify recurrent somatic genomic alterations, frequently affected signaling pathways, and shared mutation signatures among multifocal SI-NETs. Additionally, we carried out chromosome mapping of the most recurrent copy-number alterations identified to determine which parental allele had been affected in each tumor and assessed the clonal relationships of the tumors within each patient. RESULTS: Absence of shared somatic variation between the synchronous primary tumors within each patient was observed, indicating that these tumors develop independently. Although recurrent copy-number alterations were identified, additional chromosome mapping revealed that tumors from the same patient can gain or lose different parental alleles. In addition to the previously reported CDKN1B loss-of-function mutations, we observed potential loss-of-function gene alterations in TNRC6B, a candidate tumor suppressor gene in a small subset of ileal NETs. Furthermore, we show that multiple metastases in the same patient can originate from either one or several primary tumors. CONCLUSIONS: Our study demonstrates major genomic diversity among multifocal ileal NETs, highlighting the need to identify and remove all primary tumors, which have the potential to metastasize, and the need for optimized targeted treatments.
Assuntos
Neoplasias Intestinais , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Mutação , Tumores Neuroendócrinos/genética , Proteínas de Ligação a RNA/genética , Neoplasias Gástricas , Sequenciamento Completo do GenomaRESUMO
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are heterogeneous malignancies with distinct prognosis based on primary tumor localization, grade, stage and functionality. Surgery remains the only curative option in localized tumors, but systemic therapy is the mainstay of treatment for patients with advanced disease. For decades, the therapeutic landscape of GEP-NETs was limited to chemotherapy regimens with low response rates. The arrival of novel agents such as somatostatin analogues, peptide receptor radionuclide therapy, tyrosine kinase inhibitors or mTOR-targeted drugs, has changed the therapeutic paradigm of GEP-NETs. However, the efficacy of these agents is limited in time and there is scarce knowledge of optimal treatment sequencing. In recent years, massive parallel sequencing techniques have started to unravel the genomic intricacies of these tumors, allowing us to better understand the mechanisms of resistance to current treatments and to develop new targeted agents that will hopefully start an era for personalized treatment in NETs. In this review we aim to summarize the most relevant genomic aberrations and signaling pathways underlying GEP-NET tumorigenesis and potential therapeutic strategies derived from them.
Assuntos
Tumores Neuroendócrinos , Epigênese Genética , Humanos , Neoplasias Intestinais , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas , Inibidores de Proteínas Quinases/uso terapêutico , Radioisótopos , Receptores de Peptídeos/metabolismo , Somatostatina/metabolismo , Somatostatina/uso terapêutico , Neoplasias Gástricas , Serina-Treonina Quinases TOR/metabolismoRESUMO
PURPOSE: The immune tumor microenvironment and the potential therapeutic opportunities for immunotherapy in small intestinal neuroendocrine tumors (siNET) have not been fully defined. EXPERIMENTAL DESIGN: Herein, we studied 40 patients with primary and synchronous metastatic siNETs, and matched blood and normal tissue obtained during surgery. We interrogated the immune checkpoint landscape using multi-parametric flow cytometry. In addition, matched FFPE tissue was obtained for multi-parametric IHC to determine the relative abundance and distribution of T-cell infiltrate. Tumor mutational burden (TMB) was also assessed and correlated with immune infiltration. RESULTS: Effector tumor-infiltrating lymphocytes (TIL) had a higher expression of PD-1 in the tumor microenvironment compared with the periphery. In addition, CD8+ TILs had a significantly higher co-expression of PD-1/ICOS and PD-1/CTLA-4 (cytotoxic T lymphocyte antigen-4) and higher levels of PD-1 expression compared with normal tissue. IHC revealed that the majority of cases have ≤10% intra-tumoral T cells but a higher number of peri-tumoral T cells, demonstrating an "exclusion" phenotype. Finally, we confirmed that siNETs have a low TMB compared with other tumor types in the TCGA database but did not find a correlation between TMB and CD8/Treg ratio. CONCLUSIONS: Taken together, these results suggest that a combination therapy approach will be required to enhance the immune response, using PD-1 as a checkpoint immunomodulator backbone in combination with other checkpoint targeting molecules (CTLA-4 or ICOS), or with drugs targeting other pathways to recruit "excluded" T cells into the tumor microenvironment to treat patients with siNETs.
Assuntos
Neoplasias Intestinais , Tumores Neuroendócrinos , Biomarcadores Tumorais/metabolismo , Linfócitos T CD8-Positivos , Antígeno CTLA-4 , Humanos , Neoplasias Intestinais/patologia , Linfócitos do Interstício Tumoral , Tumores Neuroendócrinos/patologia , Receptor de Morte Celular Programada 1 , Microambiente Tumoral/genéticaRESUMO
INTRODUCTION: Olfactory neuroblastoma (ONB) is a rare cancer of the sinonasal region. We provide a comprehensive analysis of this malignancy with molecular and clinical trial data on a subset of our cohort to report on the potential efficacy of somatostatin receptor 2 (SSTR2)-targeting imaging and therapy. METHODS: We conducted a retrospective analysis of 404 primary, locally recurrent, and metastatic olfactory neuroblastoma (ONB) patients from 12 institutions in the United States of America, United Kingdom and Europe. Clinicopathological characteristics and treatment approach were evaluated. SSTR2 expression, SSTR2-targeted imaging and the efficacy of peptide receptor radionuclide therapy [PRRT](177Lu-DOTATATE) were reported in a subset of our cohort (LUTHREE trial; NCT03454763). RESULTS: Dural infiltration at presentation was a significant predictor of overall survival (OS) and disease-free survival (DFS) in primary cases (n = 278). Kadish-Morita staging and Dulguerov T-stage both had limitations regarding their prognostic value. Multivariable survival analysis demonstrated improved outcomes with lower stage and receipt of adjuvant radiotherapy. Prophylactic neck irradiation significantly reduces the rate of nodal recurrence. 82.4% of the cohort were positive for SSTR2; treatment of three metastatic cases with SSTR2-targeted peptide-radionuclide receptor therapy (PRRT) in the LUTHREE trial was well-tolerated and resulted in stable disease (SD). CONCLUSIONS: This study presents pertinent clinical data from the largest dataset, to date, on ONB. We identify key prognostic markers and integrate these into an updated staging system, highlight the importance of adjuvant radiotherapy across all disease stages, the utility of prophylactic neck irradiation and the potential efficacy of targeting SSTR2 to manage disease.
Assuntos
Estesioneuroblastoma Olfatório , Neuroblastoma , Neoplasias Nasais , Estesioneuroblastoma Olfatório/patologia , Estesioneuroblastoma Olfatório/terapia , Humanos , Cavidade Nasal/metabolismo , Cavidade Nasal/patologia , Neuroblastoma/patologia , Neoplasias Nasais/radioterapia , Tomografia por Emissão de Pósitrons , Radioisótopos , Cintilografia , Receptores de Somatostatina/metabolismo , Estudos RetrospectivosRESUMO
Recent data suggest that Pancreatic Neuroendocrine Tumours (PanNETs) originate from α- or ß-cells of the islets of Langerhans. The majority of PanNETs are non-functional and do not express cell-type specific hormones. In the current study we examine whether tumour DNA methylation (DNAme) profiling combined with genomic data is able to identify cell of origin and to reveal pathways involved in PanNET progression. We analyse genome-wide DNAme data of 125 PanNETs and sorted α- and ß-cells. To confirm cell identity, we investigate ARX and PDX1 expression. Based on epigenetic similarities, PanNETs cluster in α-like, ß-like and intermediate tumours. The epigenetic similarity to α-cells progressively decreases in the intermediate tumours, which present unclear differentiation. Specific transcription factor methylation and expression vary in the respective α/ß-tumour groups. Depending on DNAme similarity to α/ß-cells, PanNETs have different mutational spectra, stage of the disease and prognosis, indicating potential means of PanNET progression.
Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/metabolismo , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/genéticaRESUMO
Neuroendocrine tumors (NETs) consist of heterogeneous neoplasms. The neuroendocrine cells of the human body are confined to certain organs, such as the thyroid, pancreas and adrenals, or they are dispersed throughout the body in the respiratory tract and in the intestinal mucosa. The cells belong to the diffuse endocrine cell system, share a neuroendocrine phenotype, and accumulate precursor molecules which are then processed into hormones, peptides or amines. The tightly controlled release on stimulation is either to the blood stream or adjacent cells or neurons. Neuroendocrine cells regulate various processes in the human body, such as gastrointestinal secretion, blood pressure and response to stress. NETs present a wide spectrum of malignant diseases from rather benign to very malignant and lethal variants. NETs may occur in any organ, but are mainly detected in the gastroenteropancreatic system and in the lungs. The understanding of NET biology and treatments has changed dramatically during the last decade. Today, the main problems that clinicians and translational scientists face in overcoming these malignancies relate to various aspects within the molecular pathogenesis of NETs. This chapter focuses on the importance of novel biomarkers: microRNA and microRNA inhibitors; DNA methylation and epigenetics, and immunotherapy and virotherapy to develop novel treatments for NETs.