Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Basic Microbiol ; : e2400127, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38774954

RESUMO

Global interest in mushroom farming techniques has grown in the last few years. Despite not making up a large amount of the human diet at the moment, the nutritional worth of mushrooms has prompted their usage. The three main segments of the global mushroom industry are wild, culinary (edible), and medicinal mushrooms. The quality food that mushrooms provide can be utilized to build agricultural ecosystems that are more sustainable for increasing productivity and enhancing the effectiveness of resource usage. This is mostly because mushrooms can be utilized for the recycling of biomass and remains from crop production. Culinary-medicinal mushrooms are becoming more and more important because of their nutrient density, dietary value, and health advantages. Given its many bioactive components, which include polysaccharides, proteins, vitamins, minerals, dietary fiber, and secondary metabolites, mushrooms have been utilized extensively as health foods. These mushrooms exhibit pharmacological activities and possess prebiotic and antibacterial capabilities. This review provides information on the latest advancements in the sustainable cultivation of mushrooms, particularly with nontraditional substrates, and their potential therapeutic uses. Furthermore, some of the newest developments and difficulties in the production of mushrooms are explored.

2.
J Basic Microbiol ; 63(7): 790-800, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37097714

RESUMO

Cellulolytic actinobacterium, Promicromonospora sp. VP111 concomitantly produced cellulases (CELs), xylanase and pectinase when grown on commercial cellulose and untreated agricultural lignocellulosic residues (wheat straw and sugarcane bagasse). Secreted CELs hydrolyzed (enhanced with Co2+ ion) multiple cellulosic substrates, including sodium carboxymethyl cellulose (Na-CMC), Whatman filter paper no. 1, microcrystalline cellulose (avicel), p-nitrophenyl-ß-D-glucopyranoside (pNPG), laminarin, and cellulose powder. The CELs showed stabilities in the presence of various chemicals, including glucose (0.2 M), detergents (1%, w/v or v/v), denaturants (1%, w/v or v/v), and sodium chloride (NaCl, 30%, w/v). The CELs were fractionated using ammonium sulfate precipitation and dialysis. Activities (%) of fractionated CELs were retained at 60°C for endoglucanase/carboxymethyl cellulase (CMCase) (88.38), filter paper cellulase (FPase) (77.55), and ß-glucosidase (90.52), which indicated of thermo-stability. Similarly, the activities (%) for CMCase (85.79), FPase (82.48), and ß-glucosidase (85.92) at pH 8.5 indicated of alkaline-stability. Kinetic factors, Km and Vmax for endoglucanase component of fractionated CELs were 0.014 g/l and 158.23 µM glucose/min/mL, respectively. Fractionated CELs yielded activation energies (kJ/mol) of 17.933, 6.294, and 4.207 for CMCase, FPase, and ß-glucosidase activities, respectively in linear thermostable Arrhenius plots. Thus, this study reports on the multipurpose CELs from an untreated agricultural residue utilizing Promicromonospora in relation to broad substrate specificity, halo-tolerance, alkaline-tolerance, detergent-tolerance, thermo-tolerance, organic solvent-tolerance, and end product-tolerance.


Assuntos
Celulase , Celulases , Saccharum , Celulases/metabolismo , Celulose , Celulase/metabolismo , Especificidade por Substrato , Saccharum/metabolismo , beta-Glucosidase/metabolismo , Glucose , Concentração de Íons de Hidrogênio
3.
J Basic Microbiol ; 62(7): 764-778, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35638879

RESUMO

Nitrogen occurs as inert and inaccessible dinitrogen gaseous form (N2 ) in the atmosphere. Biological nitrogen fixation is a chief process that makes this dinitrogen (N2 ) accessible and bioavailable in the form of ammonium (NH4 + ) ions. The key organisms to fix nitrogen are certain prokaryotes, called diazotrophs either in the free-living form or establishing significant mutual relationships with a variety of plants. On such examples is ~95-100 MY old incomparable symbiosis between dicotyledonous trees and a unique actinobacterial diazotroph in diverse ecosystems. In this association, the root of the certain dicotyledonous tree (~25 genera and 225 species) belonging to three different taxonomic orders, Fagales, Cucurbitales, and Rosales (FaCuRo) known as actinorhizal trees can host a diazotroph, Frankia of order Frankiales. Frankia is gram-positive, branched, filamentous, sporulating, and free-living soil actinobacterium. It resides in the specialized, multilobed, and coralloid organs (lateral roots but without caps), the root nodules of actinorhizal tress. This review aims to provide systematic information on the distribution and the phylogenetic diversity of hosts from FaCuRo and their micro-endosymbionts (Frankia spp.), colonization mechanisms, and signaling pathways. We also aim to provide details on developmental and physiological imperatives for gene regulation and functional genomics of symbiosis, phenomenal restoration ecology, influences of contemporary global climatic changes, and anthropogenic impacts on plant-Frankia interactions for the functioning of ecosystems and the biosphere.


Assuntos
Frankia , Simbiose , Mudança Climática , Ecossistema , Fagales/microbiologia , Frankia/genética , Nitrogênio/metabolismo , Fixação de Nitrogênio , Filogenia , Simbiose/genética
4.
J Basic Microbiol ; 60(1): 47-57, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31680284

RESUMO

The present investigation deals with the characterisation of three As-resistant bacteria, Bacillus aryabhattai strain VPS1, Bacillus licheniformis strain VPS6 and Sporosarcina thermotolerans strain VPS7 isolated from the rhizosphere of a contaminated paddy field in Chakdaha, Nadia, West Bengal, India. Two strains, VPS6 and VPS7 showed ureolytic activity, which can be used for microbial-induced calcite precipitation of As as a bioremediation option. However, As reduction and oxidation capacities were not reported in any of these bacteria. A phylogenetic tree of 16S ribosomal RNA gene sequences was constructed for all three bacterial isolates, including different species of As-resistant Bacillus and Sporosarcina. Furthermore, literature survey and genome mining were employed to explore the diversity of As resistance-related proteins, arsenite S-adenosylmethyltransferase (ArsM) and arsenical pump membrane protein (ArsB) among different bacteria, and the phylogenetic relatedness was studied to understand the distribution and evolution of their amino acid sequences. ArsB was predominantly present in a wide variety of bacteria (347 taxa); however, ArsM was reported in comparatively fewer isolates (109 taxa). There were a total of 60 similar taxa that contained both ArsM and ArsB. Both proteins were most abundantly present in phylum Proteobacteria. Overall, this investigation enumerates As-resistant bacteria to understand the As metabolism in the environment, and the phylogenetic analysis of As resistance-related proteins helps in understanding the functional relationship in different bacteria for their role in As mobility in the environment.


Assuntos
Arsenicais/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Poluentes do Solo/metabolismo , Bacillus/genética , Bacillus/metabolismo , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Índia , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo , Sporosarcina/genética , Sporosarcina/metabolismo , Ureia/metabolismo
5.
J Basic Microbiol ; 59(5): 477-486, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30900761

RESUMO

In the present study, a lead (Pb)-resistant bacterium, Staphylococcus hominis strain AMB-2 was isolated from Mandoli industrial area, Delhi and selected for heavy metal biosorption considering multiple heavy metal resistance. In the batch experiment, both living and dead biomasses of strain AMB-2 showed biosorption of Pb and cadmium (Cd) in single and binary systems as analyzed through Inductively coupled plasma-optical emission spectrometry. Living biomass exhibited more biosorption of metals than dead biomass in both single and binary systems. However, in the binary system, metals competed for the attachment sites on the bacterial surface, where Pb got more preference over Cd for the same. The underlying mechanism for the biosorption was attachment of the metal ions through functional groups onto the surface of the biomass as revealed by scanning electron microscope-energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. Conclusively, this study displayed an effective biotreatment of Pb and Cd from aqueous medium using a low-cost biosorbent prepared from S. hominis strain AMB-2 considering biosafety of microorganisms and an eco-friendly approach.


Assuntos
Chumbo/metabolismo , Metais Pesados/metabolismo , Staphylococcus hominis/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Biodegradação Ambiental , Biomassa , Cádmio/metabolismo , Testes de Sensibilidade Microbiana , Filogenia , Microbiologia do Solo , Staphylococcus hominis/classificação , Staphylococcus hominis/isolamento & purificação , Staphylococcus hominis/ultraestrutura
6.
Int J Syst Evol Microbiol ; 65(11): 4008-4012, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26276159

RESUMO

A novel aerobic, non-motile, rod-shaped, catalase- and oxidase-positive bacterial strain, designated UKS3T, was isolated from garden soil, and subjected to polyphasic taxonomic analysis. Strain UKS3T formed whitish, viscous colonies on nutrient agar and was Gram-staining negative. Phylogenetic analysis, based on 16S rRNA gene sequence, showed that maximum pairwise similarity occurs with representatives of the genus Myroides. The most closely related species include Myroides marinus JS-08T (92.7 % sequence similarity), Myroides phaeus MY15T (92.7 %), Myroides odoratus DSM 2801T (91.5 %) and Myroides odoratimimus CCUG 39352T (91.4 %). Strain UKS3T contained menaquinone-6 (MK-6) as the major respiratory quinone and iso-C15 : 0 (40.2 %), anteiso-C15 : 0 (9.4 %) and iso-C17 : 0 3-OH (8.5 %) as major fatty acids. Phosphatidylethanolamine, phospholipids and three aminolipids were the major polar lipids. The DNA G+C content of strain UKS3T was 36.8 ± 2.0 mol%. On the basis of phenotypic, chemotaxonomic and molecular analysis, strain UKS3T represents a novel species of the genus Myroides, for which the name Myroides indicus sp. nov., is proposed. The type strain is UKS3T ( = DSM 28213T = NCIM 5555T ).


Assuntos
Flavobacteriaceae/classificação , Jardins , Filogenia , Microbiologia do Solo , Bactérias Aeróbias/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Índia , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
7.
Environ Sci Pollut Res Int ; 30(21): 59163-59193, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37046169

RESUMO

Chromium (Cr) compounds are usually toxins and exist abundantly in two different forms, Cr(VI) and Cr(III), in nature. Their contamination in any environment is a major problem. Many extreme environments including cold climate, warm climate, acidic environment, basic/alkaline environment, hypersaline environment, radiation, drought, high pressure, and anaerobic conditions have accumulated elevated Cr contamination. These harsh physicochemical conditions associated with Cr(VI) contamination damage biological systems in various ways. However, several unique microorganisms belonging to phylogenetically distant taxa (bacteria, fungi, and microalgae) owing to different and very distinct physiological characteristics can withstand extremities of Cr(VI) in different physicochemical environments. These challenging situations offer great potential and extended proficiencies in extremophiles for environmental and biotechnological applications. On these issues, the present review draws attention to Cr(VI) contamination from diverse extreme environmental regions. The study gives a detailed account on the ecology and biogeography of Cr(VI)-resistant microorganisms in inhospitable environments, and their use for detoxifying Cr(VI) and other applications. The study also focuses on physiological, multi-omics, and genetic engineering approaches of Cr(VI)-resistant extremophiles.


Assuntos
Extremófilos , Cromo/química , Bactérias/genética , Ambientes Extremos , Biodegradação Ambiental , Oxirredução
8.
Front Microbiol ; 11: 619766, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584585

RESUMO

Chromium (Cr) (VI) is a well-known toxin to all types of biological organisms. Over the past few decades, many investigators have employed numerous bioprocesses to neutralize the toxic effects of Cr(VI). One of the main process for its treatment is bioreduction into Cr(III). Key to this process is the ability of microbial enzymes, which facilitate the transfer of electrons into the high valence state of the metal that acts as an electron acceptor. Many underlying previous efforts have stressed on the use of different external organic and inorganic substances as electron donors to promote Cr(VI) reduction process by different microorganisms. The use of various redox mediators enabled electron transport facility for extracellular Cr(VI) reduction and accelerated the reaction. Also, many chemicals have employed diverse roles to improve the Cr(VI) reduction process in different microorganisms. The application of aforementioned materials at the contaminated systems has offered a variety of influence on Cr(VI) bioremediation by altering microbial community structures and functions and redox environment. The collective insights suggest that the knowledge of appropriate implementation of suitable nutrients can strongly inspire the Cr(VI) reduction rate and efficiency. However, a comprehensive information on such substances and their roles and biochemical pathways in different microorganisms remains elusive. In this regard, our review sheds light on the contributions of various chemicals as electron donors, redox mediators, cofactors, etc., on microbial Cr(VI) reduction for enhanced treatment practices.

9.
Braz J Microbiol ; 49(2): 429-442, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29157901

RESUMO

Bacteria are important sources of cellulases with various industrial and biotechnological applications. In view of this, a non-hemolytic bacterial strain, tolerant to various environmental pollutants (heavy metals and organic solvents), showing high cellulolytic index (7.89) was isolated from cattle shed soil and identified as Bacillus sp. SV1 (99.27% pairwise similarity with Bacillus korlensis). Extracellular cellulases showed the presence of endoglucanase, total cellulase and ß-glucosidase activities. Cellulase production was induced in presence of cellulose (3.3 times CMCase, 2.9 times FPase and 2.1 times ß-glucosidase), and enhanced (115.1% CMCase) by low-cost corn steep solids. An in silico investigation of endoglucanase (EC 3.2.1.4) protein sequences of three Bacillus spp. as query, revealed their similarities with members of nine bacterial phyla and to Eukaryota (represented by Arthropoda and Nematoda), and also highlighted of a convergent and divergent evolution from other enzymes of different substrate [(1,3)-linked beta-d-glucans, xylan and chitosan] specificities. Characteristic conserved signature indels were observed among members of Actinobacteria (7 aa insert) and Firmicutes (9 aa insert) that served as a potential tool in support of their relatedness in phylogenetic trees.


Assuntos
Bacillus/enzimologia , Celulase/genética , Celulase/metabolismo , Evolução Molecular , Animais , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Bovinos , Celulose/metabolismo , Biologia Computacional , Fezes/microbiologia , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Mutação INDEL , Análise de Sequência de DNA , Homologia de Sequência , Especificidade por Substrato , Zea mays/metabolismo
10.
J Comput Biol ; 24(10): 1029-1042, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28177649

RESUMO

The cellulases from different cellulolytic organisms have evolutionary relationships, which range from single-celled prokaryotes to the complex eukaryotes of the living world. This in silico analysis revealed the presence of a conserved cellulase domain along with evolutionary relationships among cellulases from several species of Archaea, Bacteria, and Eukarya. The amino acid sequences of cellulases from Archaea and Bacteria showed closer identity with their domain or phylum members that provided insights into convergent and divergent evolution of cellulases from other enzymes with different substrate specificities. Evolutionary relatedness was also observed in phylogenetic trees among a number of cellulase sequences of diverse taxa. In cellulases, propensity for alanine, glycine, leucine, serine, and threonine was high, but low for cysteine, histidine, and methionine. Catalytic aspartic acid had a higher propensity than glutamic acid, and both were involved in regular expression patterns. Characteristic group and multigroup-specific conserved signature indels located in the catalytic domains of cellulases were observed that further clarified evolutionary relationships. These indels can be distinctive molecular tools for understanding phylogeny and identification of unknown cellulolytic species of common evolutionary descent in different environments.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Celulases/genética , Eucariotos/enzimologia , Evolução Molecular , Mutação INDEL , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Eucariotos/classificação , Eucariotos/genética , Filogenia , Especificidade por Substrato
11.
Appl Biochem Biotechnol ; 179(5): 863-79, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26956574

RESUMO

High costs of natural cellulose utilization and cellulase production are an industrial challenge. In view of this, an isolated soil actinobacterium identified as Promicromonospora sp. VP111 showed potential for production of major cellulases (CMCase, FPase, and ß-glucosidase) utilizing untreated agricultural lignocellulosic wastes. Extensive disintegration of microcrystalline cellulose and adherence on it during fermentation divulged true cellulolytic efficiency of the strain. Conventional optimization resulted in increased cellulase yield in a cost-effective medium, and the central composite design (CCD) analysis revealed cellulase production to be limited by cellulose and ammonium sulfate. Cellulase activities were enhanced by Co(+2) (1 mM) and retained up to 60 °C and pH 9.0, indicating thermo-alkaline tolerance. Cellulases showed stability in organic solvents (25 % v/v) with log P ow ≥ 1.24. Untreated wheat straw during submerged fermentation was particularly degraded and yielded about twofold higher levels of cellulases than with commercial cellulose (Na-CMC and avicel) which is especially economical. Thus, this is the first detailed report on cellulases from an efficient strain of Promicromonospora that was non-hemolytic, alkali-halotolerant, antibiotic (erythromycin, kanamycin, rifampicin, cefaclor, ceftazidime) resistant, multiple heavy metal (Mo(+6) = W(+6) > Pb(+2) > Mn(+2) > Cr(+3) > Sn(+2)), and organic solvent (n-hexane, isooctane) tolerant, which is industrially and environmentally valuable.


Assuntos
Actinobacteria/enzimologia , Celulases/biossíntese , Fermentação , Lignina/química , Actinobacteria/química , Agricultura , Biodegradação Ambiental , Celulases/química , Etanol/química , Solventes/toxicidade
12.
J Comput Biol ; 21(10): 753-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25147925

RESUMO

Bacteria exist in a wide range of habitats ranging from psychrophilic through mesophilic to thermophilic. These different habitats have distinct environmental restriction for their existence. These microorganisms evolve themselves to survive in a specific habitat through the phenotypic and genotypic changes. In the bacterial domain, in silico analysis of 16S rRNA gene sequences using Mega 5.2 software by computing nucleotide composition, and evaluating their significance by statistical analysis using analysis of variance through Statistical Package for the Social Sciences (SPSS) version 16.0, revealed the habitat-specific bias in the occurrence of four types of nucleosides (A, T, C, and G) in the 16S rRNA gene. This hypothesis is also supported by Duncan's multiple range significance test at p=0.05 and also by the clustering of bacterial species of the same habitat group in the neighbor-joining tree of 150 different bacterial species of different psychrophilic, mesophilic, and thermophilic habitats (50 from each). The results on the probability of substitution (transition and transversion) in 16S rRNA gene sequences suggest that there is a habitat-specific selection pressure that possibly happens at the level of replication and repair process that results in a decreasing frequency of occurrence of adenine and thymine in the order psychrophilic>mesophilic>thermophilic species, and in an increasing frequency of occurrence of cytosine and guanine in the order psychrophilic

Assuntos
Adaptação Fisiológica/genética , Genes Bacterianos , Filogenia , RNA Ribossômico 16S , Simulação por Computador , Ecossistema , RNA Ribossômico 16S/genética , Temperatura
13.
Braz. j. microbiol ; 49(2): 429-442, Apr.-June 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889226

RESUMO

Abstract Bacteria are important sources of cellulases with various industrial and biotechnological applications. In view of this, a non-hemolytic bacterial strain, tolerant to various environmental pollutants (heavy metals and organic solvents), showing high cellulolytic index (7.89) was isolated from cattle shed soil and identified as Bacillus sp. SV1 (99.27% pairwise similarity with Bacillus korlensis). Extracellular cellulases showed the presence of endoglucanase, total cellulase and β-glucosidase activities. Cellulase production was induced in presence of cellulose (3.3 times CMCase, 2.9 times FPase and 2.1 times β-glucosidase), and enhanced (115.1% CMCase) by low-cost corn steep solids. An in silico investigation of endoglucanase (EC 3.2.1.4) protein sequences of three Bacillus spp. as query, revealed their similarities with members of nine bacterial phyla and to Eukaryota (represented by Arthropoda and Nematoda), and also highlighted of a convergent and divergent evolution from other enzymes of different substrate [(1,3)-linked beta-d-glucans, xylan and chitosan] specificities. Characteristic conserved signature indels were observed among members of Actinobacteria (7 aa insert) and Firmicutes (9 aa insert) that served as a potential tool in support of their relatedness in phylogenetic trees.


Assuntos
Animais , Bovinos , Bacillus/enzimologia , Celulase/genética , Celulase/metabolismo , Evolução Molecular , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Celulose/metabolismo , Biologia Computacional , Fezes/microbiologia , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Mutação INDEL , Análise de Sequência de DNA , Homologia de Sequência , Especificidade por Substrato , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA