Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Carcinog ; 62(2): 145-159, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36218231

RESUMO

Doublecortin like kinase 1 (DCLK1) plays a crucial role in several cancers including colon and pancreatic adenocarcinomas. However, its role in squamous cell carcinoma (SCC) remains unknown. To this end, we examined DCLK1 expression in head and neck SCC (HNSCC) and anal SCC (ASCC). We found that DCLK1 is elevated in patient SCC tissue, which correlated with cancer progression and poorer overall survival. Furthermore, DCLK1 expression is significantly elevated in human papilloma virus negative HNSCC, which are typically aggressive with poor responses to therapy. To understand the role of DCLK1 in tumorigenesis, we used specific shRNA to suppress DCLK1 expression. This significantly reduced tumor growth, spheroid formation, and migration of HNSCC cancer cells. To further the translational relevance of our studies, we sought to identify a selective DCLK1 inhibitor. Current attempts to target DCLK1 using pharmacologic approaches have relied on nonspecific suppression of DCLK1 kinase activity. Here, we demonstrate that DiFiD (3,5-bis [2,4-difluorobenzylidene]-4-piperidone) binds to DCLK1 with high selectivity. Moreover, DiFiD mediated suppression of DCLK1 led to G2/M arrest and apoptosis and significantly suppressed tumor growth of HNSCC xenografts and ASCC patient derived xenografts, supporting that DCLK1 is critical for SCC growth.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Quinases Semelhantes a Duplacortina , Pontos de Checagem da Fase G2 do Ciclo Celular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Animais
2.
Mol Carcinog ; 61(2): 173-199, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34559922

RESUMO

Cancer and the immune system share an intimate relationship. Chronic inflammation increases the risk of cancer occurrence and can also drive inflammatory mediators into the tumor microenvironment enhancing tumor growth and survival. The p38 MAPK pathway is activated both acutely and chronically by stress, inflammatory chemokines, chronic inflammatory conditions, and cancer. These properties have led to extensive efforts to find effective drugs targeting p38, which have been unsuccessful. The immediate downstream serine/threonine kinase and substrate of p38 MAPK, mitogen-activated-protein-kinase-activated-protein-kinase-2 (MK2) protects cells against stressors by regulating the DNA damage response, transcription, protein and messenger RNA stability, and motility. The phosphorylation of downstream substrates by MK2 increases inflammatory cytokine production, drives an immune response, and contributes to wound healing. By binding directly to p38 MAPK, MK2 is responsible for the export of p38 MAPK from the nucleus which gives MK2 properties that make it unique among the large number of p38 MAPK substrates. Many of the substrates of both p38 MAPK and MK2 are separated between the cytosol and nucleus and interfering with MK2 and altering this intracellular translocation has implications for the actions of both p38 MAPK and MK2. The inhibition of MK2 has shown promise in combination with both chemotherapy and radiotherapy as a method for controlling cancer growth and metastasis in a variety of cancers. Whereas the current data are encouraging the field requires the development of selective and well tolerated drugs to target MK2 and a better understanding of its effects for effective clinical use.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias , Proteínas Serina-Treonina Quinases/metabolismo , Sobrevivência Celular , Humanos , Sistema de Sinalização das MAP Quinases , Microambiente Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35886951

RESUMO

Vasopressin type-2 receptor (V2R) is ectopically expressed and plays a pathogenic role in clear cell renal cell carcinoma (ccRCC) tumor cells. Here we examined how V2R signaling within human ccRCC tumor cells (Caki1 cells) stimulates stromal cancer-associated fibroblasts (CAFs). We found that cell culture conditioned media from Caki1 cells increased activation, migration, and proliferation of fibroblasts in vitro, which was inhibited by V2R gene silencing in Caki1 cells. Analysis of the conditioned media and mRNA of the V2R gene silenced and control Caki1 cells showed that V2R regulates the production of CAF-activating factors. Some of these factors were also found to be regulated by YAP in these Caki1 cells. YAP expression colocalized and correlated with V2R expression in ccRCC tumor tissue. V2R gene silencing or V2R antagonist significantly reduced YAP in Caki1 cells. Moreover, the V2R antagonist reduced YAP expression and myofibroblasts in mouse xenograft tumors. These results suggest that V2R plays an important role in secreting pro-fibrotic factors that stimulate fibroblast activation by a YAP-dependent mechanism in ccRCC tumors. Our results demonstrate a novel role for the V2R-YAP axis in the regulation of myofibroblasts in ccRCC and a potential therapeutic target.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma de Células Renais , Neoplasias Renais , Receptores de Vasopressinas , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Fibroblastos/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia , Vasopressinas/genética , Vasopressinas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Gastroenterology ; 158(5): 1433-1449.e27, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31786131

RESUMO

BACKGROUND & AIMS: Prolactin (PRL) signaling is up-regulated in hormone-responsive cancers. The PRL receptor (PRLR) is a class I cytokine receptor that signals via the Janus kinase (JAK)-signal transducer and activator of transcription and mitogen-activated protein kinase pathways to regulate cell proliferation, migration, stem cell features, and apoptosis. Patients with pancreatic ductal adenocarcinoma (PDAC) have high plasma levels of PRL. We investigated whether PRLR signaling contributes to the growth of pancreatic tumors in mice. METHODS: We used immunohistochemical analyses to compare levels of PRL and PRLR in multitumor tissue microarrays. We used structure-based virtual screening and fragment-based drug discovery to identify compounds likely to bind PRLR and interfere with its signaling. Human pancreatic cell lines (AsPC-1, BxPC-3, Panc-1, and MiaPaCa-2), with or without knockdown of PRLR (clustered regularly interspaced short palindromic repeats or small hairpin RNA), were incubated with PRL or penfluridol and analyzed in proliferation and spheroid formation. C57BL/6 mice were given injections of UNKC-6141 cells, with or without knockdown of PRLR, into pancreas, and tumor development was monitored for 4 weeks, with some mice receiving penfluridol treatment for 21 days. Human pancreatic tumor tissues were implanted into interscapular fat pads of NSG mice, and mice were given injections of penfluridol daily for 28 days. Nude mice were given injections of Panc-1 cells, xenograft tumors were grown for 2 weeks, and mice were then given intraperitoneal penfluridol for 35 days. Tumors were collected from mice and analyzed by histology, immunohistochemistry, and immunoblots. RESULTS: Levels of PRLR were increased in PDAC compared with nontumor pancreatic tissues. Incubation of pancreatic cell lines with PRL activated signaling via JAK2-signal transducer and activator of transcription 3 and extracellular signal-regulated kinase, as well as formation of pancospheres and cell migration; these activities were not observed in cells with PRLR knockdown. Pancreatic cancer cells with PRLR knockdown formed significantly smaller tumors in mice. We identified several diphenylbutylpiperidine-class antipsychotic drugs as agents that decreased PRL-induced JAK2 signaling; incubation of pancreatic cancer cells with these compounds reduced their proliferation and formation of panco spheres. Injections of 1 of these compounds, penfluridol, slowed the growth of xenograft tumors in the different mouse models, reducing proliferation and inducing autophagy of the tumor cells. CONCLUSIONS: Levels of PRLR are increased in PDAC, and exposure to PRL increases proliferation and migration of pancreatic cancer cells. Antipsychotic drugs, such as penfluridol, block PRL signaling in pancreatic cancer cells to reduce their proliferation, induce autophagy, and slow the growth of xenograft tumors in mice. These drugs might be tested in patients with PDAC.


Assuntos
Antipsicóticos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Penfluridol/farmacologia , Prolactina/metabolismo , Receptores da Prolactina/antagonistas & inibidores , Animais , Antipsicóticos/uso terapêutico , Autofagia/efeitos dos fármacos , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Técnicas de Silenciamento de Genes , Humanos , Injeções Intraperitoneais , Janus Quinase 2/metabolismo , Masculino , Camundongos , Pâncreas/patologia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Penfluridol/uso terapêutico , Prolactina/sangue , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Gastroenterology ; 157(6): 1646-1659.e11, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31442435

RESUMO

BACKGROUND & AIMS: The histone lysine demethylase 3A (KDM3A) demethylates H3K9me1 and H3K9Me2 to increase gene transcription and is upregulated in tumors, including pancreatic tumors. We investigated its activities in pancreatic cancer cell lines and its regulation of the gene encoding doublecortin calmodulin-like kinase 1 (DCLK1), a marker of cancer stem cells. METHODS: We knocked down KDM3A in MiaPaCa-2 and S2-007 pancreatic cancer cell lines and overexpressed KDM3A in HPNE cells (human noncancerous pancreatic ductal cell line); we evaluated cell migration, invasion, and spheroid formation under hypoxic and normoxic conditions. Nude mice were given orthotopic injections of S2-007 cells, with or without (control) knockdown of KDM3A, and HPNE cells, with or without (control) overexpression of KDM3A; tumor growth was assessed. We analyzed pancreatic tumor tissues from mice and pancreatic cancer cell lines by immunohistochemistry and immunoblotting. We performed RNA-sequencing analysis of MiaPaCa-2 and S2-007 cells with knockdown of KDM3A and evaluated localization of DCLK1 and KDM3A by immunofluorescence. We analyzed the cancer genome atlas for levels of KDM3A and DCLK1 messenger RNA in human pancreatic ductal adenocarcinoma (PDAC) tissues and association with patient survival time. RESULTS: Levels of KDM3A were increased in human pancreatic tumor tissues and cell lines, compared with adjacent nontumor pancreatic tissues, such as islet and acinar cells. Knockdown of KDM3A in S2-007 cells significantly reduced colony formation, invasion, migration, and spheroid formation, compared with control cells, and slowed growth of orthotopic tumors in mice. We identified KDM3A-binding sites in the DCLK1 promoter; S2-007 cells with knockdown of KDM3A had reduced levels of DCLK1. HPNE cells that overexpressed KDM3A formed foci and spheres in culture and formed tumors and metastases in mice, whereas control HPNE cells did not. Hypoxia induced sphere formation and increased levels of KDM3A in S2-007 cells and in HPNE cells that overexpressed DCLK1, but not control HPNE cells. Levels of KDM3A and DCLK1 messenger RNA were higher in human PDAC than nontumor pancreatic tissues and correlated with shorter survival times of patients. CONCLUSIONS: We found human PDAC samples and pancreatic cancer cell lines to overexpress KDM3A. KDM3A increases expression of DCLK1, and levels of both proteins are increased in human PDAC samples. Knockdown of KDM3A in pancreatic cancer cell lines reduced their invasive and sphere-forming activities in culture and formation of orthotopic tumors in mice. Hypoxia increased expression of KDM3A in pancreatic cancer cells. Strategies to disrupt this pathway might be developed for treatment of pancreatic cancer.


Assuntos
Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Metilação de DNA , Conjuntos de Dados como Assunto , Quinases Semelhantes a Duplacortina , Feminino , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Análise de Sobrevida , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Carcinog ; 58(8): 1400-1409, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31020708

RESUMO

We previously reported that ionizing radiation (IR) mediates cell death through the induction of CUGBP elav-like family member 2 (CELF2), a tumor suppressor. CELF2 is an RNA binding protein that modulates mRNA stability and translation. Since IR induces autophagy, we hypothesized that CELF2 regulates autophagy-mediated colorectal cancer (CRC) cell death. For clinical relevance, we determined CELF2 levels in The Cancer Genome Atlas (TCGA). Role of CELF2 in radiation response was carried out in CRC cell lines by immunoblotting, immunofluorescence, autophagic vacuole analyses, RNA stability assay, quantitative polymerase chain reaction and electron microscopy. In vivo studies were performed in a xenograft tumor model. TCGA analyses demonstrated that compared to normal tissue, CELF2 is expressed at significantly lower levels in CRC, and is associated with better overall 5-year survival in patients receiving radiation. Mechanistically, CELF2 increased levels of critical components of the autophagy cascade including Beclin-1, ATG5, and ATG12 by modulating mRNA stability. CELF2 also increased autophagic flux in CRC. IR significantly induced autophagy in CRC which correlates with increased levels of CELF2 and autophagy associated proteins. Silencing CELF2 with siRNA, mitigated IR induced autophagy. Moreover, knockdown of CELF2 in vivo conferred tumor resistance to IR. These studies elucidate an unrecognized role for CELF2 in inducing autophagy and potentiating the effects of radiotherapy in CRC.


Assuntos
Autofagia/fisiologia , Proteínas CELF/metabolismo , Sobrevivência Celular/efeitos da radiação , Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Proteínas CELF/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células HCT116 , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Proteínas do Tecido Nervoso/genética , Prognóstico , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Radiação Ionizante , Transplante Heterólogo
7.
Cancer ; 124(19): 3881-3889, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30291796

RESUMO

BACKGROUND: Cetuximab combined with radiation therapy (RT) is an evidence-based treatment for locally advanced head and neck squamous cell carcinoma (HNSCC); however, locoregional failure remains the primary cause of cancer-related death in this disease. Intratumoral injection of epidermal growth factor receptor (EGFR)-antisense plasmid DNA (EGFR-AS) is safe and has been associated with promising lesional responses in patients who have recurrent/metastatic HNSCC. For the current study, the authors investigated the antitumor effects of cetuximab and EGFR-AS in preclinical HNSCC models and reported their phase 1 experience adding intratumoral EGFR-AS to cetuximab RT. METHODS: Antitumor mechanisms were investigated in cell line and xenograft models. Phase 1 trial eligibility required stage IVA through IVC HNSCC and a measurable lesion accessible for repeat injections. Patients received standard cetuximab was for 9 weeks. EGFR-AS was injected weekly until they achieved a lesional complete response. RT was delivered by conventional fractionation for 7 weeks, starting at week 3. Research biopsies were obtained at baseline and week 2. RESULTS: When added to cetuximab, EGFR-AS decreased cell viability and xenograft growth compared with EGFR-sense control, partially mediated by reduced EGFR expression. Six patients were enrolled in the phase 1 cohort. No grade 2 or greater EGFR-AS-related adverse events occurred. The best lesional response was a complete response (4 patients), and 1 patient each had a partial response and disease progression. EGFR expression decreased in 4 patients who had available paired specimens. CONCLUSIONS: In preclinical models, dual EGFR inhibition with cetuximab and EGFR-AS enhanced antitumor effects. In a phase 1 cohort, intratumoral EGFR-AS injections, cetuximab, and RT were well tolerated. A phase 2 trial is needed to conduct an extended evaluation of safety and to establish efficacy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cetuximab/administração & dosagem , DNA Antissenso/administração & dosagem , Neoplasias de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Terapia Combinada , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Terapia Genética/métodos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Inibidores de Proteínas Quinases/administração & dosagem , Radioterapia Adjuvante , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Carcinog ; 56(4): 1199-1213, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27787930

RESUMO

Tumor-associated stromal cells are dynamic characters that endorse the carcinogenic process in a multitude of ways. The tumor microenvironment plays a crucial role throughout the tumor progression, which includes initiation, growth, invasion, and metastasis. The tumor microenvironment consists of cellular and non-cellular components. Tumor-associated stromal cell types include the microbiome, immune cells including macrophages, dendritic and T-cells, cells associated with blood and lymphatic vessels including pericytes and endothelial cells, fibroblasts, neuronal cells, and adipocytes. The non-cellular components of the microenvironment include matrix proteins and secreted factors. The development of therapies that target the mechanisms by which stromal cells contribute to successful tumorigenesis is major goal of upcoming cancer research. The purpose of this review is to present a comprehensive discussion of the role of each of the tumor-associated stromal cell types in the carcinogenic process with a special focus on target development and therapeutic intervention. © 2016 Wiley Periodicals, Inc.


Assuntos
Carcinogênese/imunologia , Carcinogênese/patologia , Neoplasias/imunologia , Neoplasias/patologia , Células Estromais/patologia , Microambiente Tumoral , Animais , Carcinogênese/metabolismo , Matriz Extracelular/patologia , Humanos , Microbiota , Neoplasias/metabolismo , Neoplasias/microbiologia , Células Estromais/imunologia , Células Estromais/metabolismo
9.
BMC Cancer ; 16: 487, 2016 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-27421652

RESUMO

BACKGROUND: mTOR inhibition of aromatase inhibitor (AI)-resistant breast cancer is currently under evaluation in the clinic. Everolimus/RAD001 (Afinitor®) has had limited efficacy as a solo agent but is projected to become part of combination therapy for AI-resistant breast cancer. This study was conducted to investigate the anti-proliferative and resistance mechanisms of everolimus in AI-resistant breast cancer cells. METHODS: In this study we utilized two AI-resistant breast cancer cell lines, MCF-7:5C and MCF-7:2A, which were clonally derived from estrogen receptor positive (ER+) MCF-7 breast cancer cells following long-term estrogen deprivation. Cell viability assay, colony formation assay, cell cycle analysis and soft agar anchorage-independent growth assay were used to determine the efficacy of everolimus in inhibiting the proliferation and tumor forming potential of MCF-7, MCF-7:5C, MCF-7:2A and MCF10A cells. Confocal microscopy and transmission electron microscopy were used to evaluate LC3-II production and autophagosome formation, while ERE-luciferase reporter, Western blot, and RT-PCR analyses were used to assess ER expression and transcriptional activity. RESULTS: Everolimus inhibited the proliferation of MCF-7:5C and MCF-7:2A cells with relatively equal efficiency to parental MCF-7 breast cancer cells. The inhibitory effect of everolimus was due to G1 arrest as a result of downregulation of cyclin D1 and p21. Everolimus also dramatically reduced estrogen receptor (ER) expression (mRNA and protein) and transcriptional activity in addition to the ER chaperone, heat shock protein 90 protein (HSP90). Everolimus restored 4-hydroxy-tamoxifen (4OHT) sensitivity in MCF-7:5C cells and enhanced 4OHT sensitivity in MCF-7 and MCF-7:2A cells. Notably, we found that autophagy is one method of everolimus insensitivity in MCF-7 breast cancer cell lines. CONCLUSION: This study provides additional insight into the mechanism(s) of action of everolimus that can be used to enhance the utility of mTOR inhibitors as part of combination therapy for AI-resistant breast cancer.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Everolimo/farmacologia , Receptores de Estrogênio/biossíntese , Inibidores da Aromatase/uso terapêutico , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Células MCF-7 , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real
10.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645056

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a major health concern due to its high mortality from poor treatment responses and locoregional tumor invasion into life sustaining structures in the head and neck. A deeper comprehension of HNSCC invasion mechanisms holds the potential to inform targeted therapies that may enhance patient survival. We previously reported that doublecortin like kinase 1 (DCLK1) regulates invasion of HNSCC cells. Here, we tested the hypothesis that DCLK1 regulates proteins within invadopodia to facilitate HNSCC invasion. Invadopodia are specialized subcellular protrusions secreting matrix metalloproteinases that degrade the extracellular matrix (ECM). Through a comprehensive proteome analysis comparing DCLK1 control and shDCLK1 conditions, our findings reveal that DCLK1 plays a pivotal role in regulating proteins that orchestrate cytoskeletal and ECM remodeling, contributing to cell invasion. Further, we demonstrate in TCGA datasets that DCLK1 levels correlate with increasing histological grade and lymph node metastasis. We identified higher expression of DCLK1 in the leading edge of HNSCC tissue. Knockdown of DCLK1 in HNSCC reduced the number of invadopodia, cell adhesion and colony formation. Using super resolution microscopy, we demonstrate localization of DCLK1 in invadopodia and colocalization with mature invadopodia markers TKS4, TKS5, cortactin and MT1-MMP. We carried out phosphoproteomics and validated using immunofluorescence and proximity ligation assays, the interaction between DCLK1 and motor protein KIF16B. Pharmacological inhibition or knockdown of DCLK1 reduced interaction with KIF16B, secretion of MMPs, and cell invasion. This research unveils a novel function of DCLK1 within invadopodia to regulate the trafficking of matrix degrading cargo. The work highlights the impact of targeting DCLK1 to inhibit locoregional invasion, a life-threatening attribute of HNSCC.

11.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36980785

RESUMO

Cancer cells rely on the tumor microenvironment (TME), a composite of non-malignant cells, and extracellular matrix (ECM), for survival, growth, and metastasis. The ECM contributes to the biomechanical properties of the surrounding tissue, in addition to providing signals for tissue development. Cancer-associated fibroblasts (CAFs) are stromal cells in the TME that are integral to cancer progression. Subtypes of CAFs across a variety of cancers have been revealed, and each play a different role in cancer progression or suppression. CAFs secrete signaling molecules and remodel the surrounding ECM by depositing its constituents as well as degrading enzymes. In cancer, a remodeled ECM can lead to tumor-promoting effects. Not only does the remodeled ECM promote growth and allow for easier metastasis, but it can also modulate the immune system. A better understanding of how CAFs remodel the ECM will likely yield novel therapeutic targets. In this review, we summarize the key factors secreted by CAFs that facilitate tumor progression, ECM remodeling, and immune suppression.

12.
Microorganisms ; 11(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36838283

RESUMO

The oral microbiome is an emerging field that has been a topic of discussion since the development of next generation sequencing and the implementation of the human microbiome project. This article reviews the current literature surrounding the oral microbiome, briefly highlighting most recent methods of microbiome characterization including cutting edge omics, databases for the microbiome, and areas with current gaps in knowledge. This article also describes reports on microorganisms contained in the oral microbiome which include viruses, archaea, fungi, and bacteria, and provides an in-depth analysis of their significant roles in tissue homeostasis. Finally, we detail key bacteria involved in oral disease, including oral cancer, and the current research surrounding their role in stimulation of inflammatory cytokines, the role of gingival crevicular fluid in periodontal disease, the creation of a network of interactions between microorganisms, the influence of the planktonic microbiome and cospecies biofilms, and the implications of antibiotic resistance. This paper provides a comprehensive literature analysis while also identifying gaps in knowledge to enable future studies to be conducted.

13.
Cancers (Basel) ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37173951

RESUMO

Ovarian cancer (OvCa) is a deadly gynecologic malignancy that presents many clinical challenges due to late-stage diagnoses and the development of acquired resistance to standard-of-care treatment protocols. There is an increasing body of evidence suggesting that STATs may play a critical role in OvCa progression, resistance, and disease recurrence, and thus we sought to compile a comprehensive review to summarize the current state of knowledge on the topic. We have examined peer reviewed literature to delineate the role of STATs in both cancer cells and cells within the tumor microenvironment. In addition to summarizing the current knowledge of STAT biology in OvCa, we have also examined the capacity of small molecule inhibitor development to target specific STATs and progress toward clinical applications. From our research, the best studied and targeted factors are STAT3 and STAT5, which has resulted in the development of several inhibitors that are under current evaluation in clinical trials. There remain gaps in understanding the role of STAT1, STAT2, STAT4, and STAT6, due to limited reports in the current literature; as such, further studies to establish their implications in OvCa are necessitated. Moreover, due to the deficiency in our understanding of these STATs, selective inhibitors also remain elusive, and therefore present opportunities for discovery.

14.
Explor Target Antitumor Ther ; 4(5): 1104-1121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023989

RESUMO

Aim: Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with a survival rate below fifty percent. Addressing meager therapeutic options, a series of small molecule inhibitors were screened for antitumor efficacy. The most potent analog, acryl-3,5-bis(2,4-difluorobenzylidene)-4-piperidone (DiFiD; A-DiFiD), demonstrated strong cellular JUN proto-oncogene, activator protein 1 (AP-1) transcription factor subunit (JUN, c-Jun) antagonism. c-Jun, an oncogenic transcription factor, promotes cancer progression, invasion, and adhesion; high (JUN) mRNA expression correlates with poorer HNSCC survival. Methods: Four new small molecules were generated for cytotoxicity screening in HNSCC cell lines. A-DiFiD-treated HNSCC cells were assessed for cytotoxicity, colony formation, invasion, migration, and adhesion. Dot blot array was used to identify targets. Phospho-c-Jun (p-c-Jun) expression was analyzed using immunoblotting. The Cancer Genome Atlas (TCGA) head and neck cancer datasets were utilized to determine overall patient survival. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) datasets interfaced with University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN) were analyzed to determine protein levels of c-Jun in HNSCC patients and correlate levels with patient. Results: Of the small molecules tested, A-DiFiD was the most potent in HNSCC lines, while demonstrating low half-maximal drug inhibitory concentration (IC50) in non-malignant Het-1A cells. Additionally, A-DiFiD abrogated cell invasion, migration, and colony formation. Phospho-kinase in vitro array demonstrated A-DiFiD reduced p-c-Jun. Likewise, a time dependent reduction in p-c-Jun was observed starting at 3 min post A-DiFiD treatment. TCGA Firehose Legacy vs. recurrent and metastatic head and neck cancer reveal a nearly 3% DNA amplification in recurrent/metastatic tumor compared to below 1% in primary tumors that had no lymph node metastasis. CPTAC analysis show higher tumor c-Jun levels compared to normal. Patients with high JUN expression had significantly reduced 3-year survival. Conclusions: A-DiFiD targets c-Jun, a clinical HNSCC driver, with potent anti-tumor effects.

15.
J Med Cases ; 13(1): 26-30, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35211232

RESUMO

Selective immunoglobin A deficiency (IgAD) is the most common immunodeficiency disorder in the western world. Cancer is the most common cause of death in these individuals. Various cases have been reported of squamous cell carcinoma (SCC) in IgAD at sites like skin, oral cavity, and lung. Here we present a rare case of SCC occurring as anal cancer. No other reports to our knowledge describe this rare presentation. A 54-year-old Caucasian woman with asymptomatic partial IgAD presented with a palpable anal mass. Further evaluation showed stage IIIa SCC anal cancer (T1N1M0). Additional workup showed positive human papilloma virus (HPV) serology and positive HPV immunohistochemistry studies. The patient achieved complete response with chemoradiation with her most recent imaging and anorectal exam showing no evidence of cancer recurrence at 3 years follow-up. This case highlights the association between IgAD and malignancy. Although IgAD is the most common primary antibody deficiency, this patient's case presents a rare instance of anal SCC in an IgA-deficient individual. Studies show an association between HPV infection and SCC, but few include IgA-deficient individuals. Patients with IgAD and other immunodeficiencies are at higher risk for HPV infection and therefore may be at a higher risk of SCC. With widespread use of the HPV vaccine, the medical community should be aware of its importance in cancer prevention for these patients. Further studies are needed to evaluate relationships between IgAD, HPV infections, SCC cancer, and the role that the HPV vaccine has in cancer prophylaxis.

16.
Front Oncol ; 11: 805628, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127517

RESUMO

Gliomas represent the most common malignant primary brain tumors, and a high-grade subset of these tumors including glioblastoma are particularly refractory to current standard-of-care therapies including maximal surgical resection and chemoradiation. The prognosis of patients with these tumors continues to be poor with existing treatments and understanding treatment failure is required. The dynamic interplay between the tumor and its microenvironment has been increasingly recognized as a key mechanism by which cellular adaptation, tumor heterogeneity, and treatment resistance develops. Beyond ongoing lines of investigation into the peritumoral cellular milieu and microenvironmental architecture, recent studies have identified the growing role of mechanical properties of the microenvironment. Elucidating the impact of these biophysical factors on disease heterogeneity is crucial for designing durable therapies and may offer novel approaches for intervention and disease monitoring. Specifically, pharmacologic targeting of mechanical signal transduction substrates such as specific ion channels that have been implicated in glioma progression or the development of agents that alter the mechanical properties of the microenvironment to halt disease progression have the potential to be promising treatment strategies based on early studies. Similarly, the development of technology to measure mechanical properties of the microenvironment in vitro and in vivo and simulate these properties in bioengineered models may facilitate the use of mechanical properties as diagnostic or prognostic biomarkers that can guide treatment. Here, we review current perspectives on the influence of mechanical properties in glioma with a focus on biophysical features of tumor-adjacent tissue, the role of fluid mechanics, and mechanisms of mechanical signal transduction. We highlight the implications of recent discoveries for novel diagnostics, therapeutic targets, and accurate preclinical modeling of glioma.

17.
Oncogene ; 40(31): 5013-5025, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183772

RESUMO

Accumulation of mutant p53 (mutp53) is crucial for its oncogenic gain of function activity. DNAJA1, a member of J-domain containing proteins or heat shock protein 40, is shown to prevent unfolded mutp53 from proteasomal degradation. However, the biological function of DNAJA1 remains largely unknown. Here we show that DNAJA1 promotes tumor metastasis by accumulating unfolded mutp53. Levels of DNAJA1 in head and neck squamous cell carcinoma (HNSCC) tissues were higher than those in normal tissues. Knockdown of DNAJA1 in HNSCC cell lines carrying unfolded mutp53 significantly decreased the levels of mutp53, filopodia/lamellipodia formation, migratory potential, and active forms of CDC42/RAC1, which were not observed in HNSCC cells with DNA contact mutp53, wild-type p53, or p53 null. Such mutp53-dependent functions of DNAJA1 were supported by the observation that DNAJA1 selectively bound to unfolded mutp53. Moreover, DNAJA1 knockdown in HNSCC cells carrying unfolded mutp53 inhibited primary tumor growth and metastases to the lymph nodes and lungs. Our study suggests that DNAJA1 promotes HNSCC metastasis mainly in a manner dependent on mutp53 status, suggesting DNAJA1 as a potential therapeutic target for HNSCC harboring unfolded mutp53.


Assuntos
Biomarcadores Tumorais , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas Mutantes/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos , Proteínas Mutantes/genética , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/patologia , Oncogenes/genética , Proteína Supressora de Tumor p53/genética , Resposta a Proteínas não Dobradas/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
18.
FASEB J ; 23(2): 425-32, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18832597

RESUMO

Epidermal growth factor receptor (EGFR) is an activated oncogene in many cancers. It can be transactivated by ligands of G protein-coupled receptors (GPCRs). We show here that a novel gene, human rhomboid family-1 (RHBDF1), which was recently reported to have a pivotal role in epithelial cancer cell growth in culture and in xenograft tumors, participates in the modulation of GPCR-mediated EGFR transactivation. The RHBDF1 protein localizes mainly in the endoplasmic reticulum. Silencing the RHBDF1 gene in head and neck squamous cancer cell line 1483 cells with siRNA causes an inhibition of gastrin-releasing peptide (GRP) -induced phosphorylation of EGFR and EGFR-dependent signaling proteins p44/42 MAPK and AKT, accompanied by an inhibition of GRP-induced survival, proliferation, and invasion of the cells. The EGFR signaling pathway itself remains intact, however, as the cells remain responsive to exogenous EGF. In addition, RHBDF1 gene silencing disrupts GRP-stimulated secretion of EGFR ligand TGF-alpha, but not the production of latent TGF-alpha, whereas engineered overexpression of RHBDF1 markedly accelerates the secretion of TGF-alpha. These findings are consistent with the view that RHBDF1 is critically involved in a GPCR ligand-stimulated process leading to the activation of latent EGFR ligands.


Assuntos
Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Células Escamosas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Ativação Transcricional , Linhagem Celular Tumoral , Proliferação de Células , Retículo Endoplasmático/metabolismo , Receptores ErbB/genética , Peptídeo Liberador de Gastrina/farmacologia , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Ligantes , Proteínas de Membrana , Invasividade Neoplásica/patologia , Neoplasias de Células Escamosas/genética , Neoplasias de Células Escamosas/patologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo
19.
Clin Cancer Res ; 15(11): 3740-50, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19470725

RESUMO

PURPOSE: We determined hepatocyte growth factor (HGF) and c-Met expression and signaling in human head and neck squamous cell carcinoma (HNSCC) cells and primary tissues and tested the ability of c-Met tyrosine kinase inhibitors (TKI) to block HGF-induced biological signaling. EXPERIMENTAL DESIGN: Expression and signaling were determined using immunoblotting, ELISA, and immunohistochemistry. Biological end points included wound healing, cell proliferation, and invasion. c-Met TKIs were tested for their ability to block HGF-induced signaling and biological effects in vitro and in xenografts established in nude mice. RESULTS: c-Met was expressed and functional in HNSCC cells. HGF was secreted by HNSCC tumor-derived fibroblasts, but not by HNSCC cells. Activation of c-Met promoted phosphorylation of AKT and mitogen-activated protein kinase as well as release of the inflammatory cytokine interleukin-8. Cell growth and wound healing were also stimulated by HGF. c-Met TKIs blocked HGF-induced signaling, interleukin-8 release, and wound healing. Enhanced invasion of HNSCC cells induced by the presence of tumor-derived fibroblasts was completely blocked with a HGF-neutralizing antibody. PF-2341066, a c-Met TKI, caused a 50% inhibition of HNSCC tumor growth in vivo with decreased proliferation and increased apoptosis within the tumors. In HNSCC tumor tissues, both HGF and c-Met protein were increased compared with expression in normal mucosa. CONCLUSIONS: These results show that HGF acts mainly as a paracrine factor in HNSCC cells, the HGF/c-Met pathway is frequently up-regulated and functional in HNSCC, and a clinically relevant c-Met TKI shows antitumor activity in vivo. Blocking the HGF/c-Met pathway may be clinically useful for the treatment of HNSCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Crizotinibe , Relação Dose-Resposta a Droga , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/fisiopatologia , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Imuno-Histoquímica , Indóis/farmacologia , Camundongos , Camundongos Nus , Transplante de Neoplasias , Comunicação Parácrina/fisiologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Pirazóis , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estresse Mecânico , Sulfonamidas/farmacologia , Transplante Heterólogo , Carga Tumoral/efeitos dos fármacos
20.
Laryngoscope ; 130(10): 2366-2371, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31710711

RESUMO

OBJECTIVES/HYPOTHESIS: Human papillomavirus (HPV) is a DNA virus that causes cancer in multiple sites. Although sexual activity is the primary means of oropharyngeal HPV acquisition, studies suggest HPV transmission through occupational exposure from medical instruments and surgical fumes. We assess if aerosolization of HPV16 DNA via electrocautery places otolaryngologists at risk for exposure. STUDY DESIGN: Animal and human laboratory model. METHODS: Plasmid (pLXSN16E6E7) expressing HPV p16 E6/E7 genes was transformed into DH5α Escherichia coli cells using the heat shock method. Miniprep and maxiprep purification of transformed DNA with subsequent restriction enzyme double digestion confirmed presence of E6E7 fragment. We injected 2 µg plasmid DNA in 20 µL TE (Tris and ethylenediaminetetraacetic acid) buffer intradermally into freshly severed mouse tail then cauterized for 5 to 10 seconds. Generated fumes were collected through a suction tube fitted with Whatman filter paper. Filter paper was placed in 100 µL TE buffer. Additionally, six patients undergoing transoral robotic surgery for resection of oropharyngeal cancer were identified, three with p16-negative tumors and three with p16-positive tumors. Intraoperatively, Whatman filter paper was exposed to electrocautery fumes, then placed in 100 uL TE buffer. Additional samples were collected from the suction tubing and filter, the surgical mask of the surgeon at head of the bed, and the robot arm. RESULTS: Samples were analyzed via polymerase chain reaction with an assay sensitivity of 1.5 ng E6E7 DNA. None of the patient or mouse tail samples yielded detectable HPV16 DNA in the electrocautery fumes. We did not detect HPV16 DNA on the surgical masks, suction apparatus, or robot arm intraoperatively. CONCLUSIONS: There is likely minimal risk of occupational exposure to HPV16 via electrocautery fumes. LEVEL OF EVIDENCE: NA Laryngoscope, 130:2366-2371, 2020.


Assuntos
Carcinoma de Células Escamosas/virologia , Eletrocoagulação/instrumentação , Exposição Ocupacional , Neoplasias Orofaríngeas/virologia , Otorrinolaringologistas , Infecções por Papillomavirus/transmissão , Aerossóis , Microbiologia do Ar , Animais , Carcinoma de Células Escamosas/genética , Contaminação de Equipamentos , Papillomavirus Humano 16/genética , Humanos , Camundongos , Salas Cirúrgicas , Neoplasias Orofaríngeas/genética , Infecções por Papillomavirus/genética , Fatores de Risco , Procedimentos Cirúrgicos Robóticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA