Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant Biotechnol J ; 22(9): 2612-2623, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38743906

RESUMO

In plants, growth and defence are controlled by many molecular pathways that are antagonistic to one another. This results in a 'growth-defence trade-off', where plants temporarily reduce growth in response to pests or diseases. Due to this antagonism, genetic variants that improve resistance often reduce growth and vice versa. Therefore, in natural populations, the most disease resistant individuals are often the slowest growing. In crops, slow growth may translate into a yield penalty, but resistance is essential for protecting yield in the presence of disease. Therefore, plant breeders must balance these traits to ensure optimal yield potential and yield stability. In crops, both qualitative and quantitative disease resistance are often linked with genetic variants that cause yield penalties, but this is not always the case. Furthermore, both crop yield and disease resistance are complex traits influenced by many aspects of the plant's physiology, morphology and environment, and the relationship between the molecular growth-defence trade-off and disease resistance-yield antagonism is not well-understood. In this article, we highlight research from the last 2 years on the molecular mechanistic basis of the antagonism between defence and growth. We then discuss the interaction between disease resistance and crop yield from a breeding perspective, outlining the complexity and nuances of this relationship and where research can aid practical methods for simultaneous improvement of yield potential and disease resistance.


Assuntos
Agricultura , Produtos Agrícolas , Resistência à Doença , Doenças das Plantas , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/imunologia , Agricultura/métodos , Melhoramento Vegetal
2.
Plant Biotechnol J ; 21(10): 2100-2112, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37431308

RESUMO

Brassica rapa is grown worldwide as economically important vegetable and oilseed crop. However, its production is challenged by yield-limiting pathogens. The sustainable control of these pathogens mainly relies on the deployment of genetic resistance primarily driven by resistance gene analogues (RGAs). While several studies have identified RGAs in B. rapa, these were mainly based on a single genome reference and do not represent the full range of RGA diversity in B. rapa. In this study, we utilized the B. rapa pangenome, constructed from 71 lines encompassing 12 morphotypes, to describe a comprehensive repertoire of RGAs in B. rapa. We show that 309 RGAs were affected by presence-absence variation (PAV) and 223 RGAs were missing from the reference genome. The transmembrane leucine-rich repeat (TM-LRR) RGA class had more core gene types than variable genes, while the opposite was observed for nucleotide-binding site leucine-rich repeats (NLRs). Comparative analysis with the B. napus pangenome revealed significant RGA conservation (93%) between the two species. We identified 138 candidate RGAs located within known B. rapa disease resistance QTL, of which the majority were under negative selection. Using blackleg gene homologues, we demonstrated how these genes in B. napus were derived from B. rapa. This further clarifies the genetic relationship of these loci, which may be useful in narrowing-down candidate blackleg resistance genes. This study provides a novel genomic resource towards the identification of candidate genes for breeding disease resistance in B. rapa and its relatives.


Assuntos
Brassica napus , Brassica rapa , Brassica rapa/genética , Genes de Plantas/genética , Resistência à Doença/genética , Leucina , Melhoramento Vegetal , Brassica napus/genética
3.
Phytopathology ; 113(5): 771-785, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36324059

RESUMO

Disease resistance improvement remains a major focus in breeding programs as diseases continue to devastate Brassica production systems due to intensive cultivation and climate change. Genomics has paved the way to understand the complex genomes of Brassicas, which has been pivotal in the dissection of the genetic underpinnings of agronomic traits driving the development of superior cultivars. The new era of genomics-assisted disease resistance breeding has been marked by the development of high-quality genome references, accelerating the identification of disease resistance genes controlling both qualitative (major) gene and quantitative resistance. This facilitates the development of molecular markers for marker assisted selection and enables genome editing approaches for targeted gene manipulation to enhance the genetic value of disease resistance traits. This review summarizes the key advances in the development of genomic resources for Brassica species, focusing on improved genome references, based on long-read sequencing technologies and pangenome assemblies. This is further supported by the advances in pathogen genomics, which have resulted in the discovery of pathogenicity factors, complementing the mining of disease resistance genes in the host. Recognizing the co-evolutionary arms race between the host and pathogen, it is critical to identify novel resistance genes using crop wild relatives and synthetic cultivars or through genetic manipulation via genome-editing to sustain the development of superior cultivars. Integrating these key advances with new breeding techniques and improved phenotyping using advanced data analysis platforms will make disease resistance improvement in Brassica species more efficient and responsive to current and future demands.


Assuntos
Brassica , Brassica/genética , Resistência à Doença/genética , Genoma de Planta/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Genômica
4.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239967

RESUMO

Genome editing is an important strategy to maintain global food security and achieve sustainable agricultural development. Among all genome editing tools, CRISPR-Cas is currently the most prevalent and offers the most promise. In this review, we summarize the development of CRISPR-Cas systems, outline their classification and distinctive features, delineate their natural mechanisms in plant genome editing and exemplify the applications in plant research. Both classical and recently discovered CRISPR-Cas systems are included, detailing the class, type, structures and functions of each. We conclude by highlighting the challenges that come with CRISPR-Cas and offer suggestions on how to tackle them. We believe the gene editing toolbox will be greatly enriched, providing new avenues for a more efficient and precise breeding of climate-resilient crops.


Assuntos
Edição de Genes , Melhoramento Vegetal , Sistemas CRISPR-Cas/genética , Genoma de Planta , Produtos Agrícolas/genética
5.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232406

RESUMO

Rye (Secale cereale) is a climate-resilient cereal grown extensively as grain or forage crop in Northern and Eastern Europe. In addition to being an important crop, it has been used to improve wheat through introgression of genomic regions for improved yield and disease resistance. Understanding the genomic diversity of rye will assist both the improvement of this crop and facilitate the introgression of more valuable traits into wheat. Here, we isolated and sequenced the short arm of rye chromosome 7 (7RS) from Triticale 380SD using flow cytometry and compared it to the public Lo7 rye whole genome reference assembly. We identify 2747 Lo7 genes present on the isolated chromosome arm and two clusters containing seven and sixty-five genes that are present on Triticale 380SD 7RS, but absent from Lo7 7RS. We identified 29 genes that are not assigned to chromosomal locations in the Lo7 assembly but are present on Triticale 380SD 7RS, suggesting a chromosome arm location for these genes. Our study supports the Lo7 reference assembly and provides a repertoire of genes on Triticale 7RS.


Assuntos
Secale , Triticale , Cromossomos de Plantas/genética , Resistência à Doença/genética , Grão Comestível/genética , Secale/genética , Triticale/genética , Triticum/genética
7.
Methods Mol Biol ; 2638: 451-465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781662

RESUMO

Over the past decade, advances in plant genotyping have been critical in enabling the identification of genetic diversity, in understanding evolution, and in dissecting important traits in both crops and native plants. The widespread popularity of single-nucleotide polymorphisms (SNPs) has prompted significant improvements to SNP-based genotyping, including SNP arrays, genotyping by sequencing, and whole-genome resequencing. More recent approaches, including genotyping structural variants, utilizing pangenomes to capture species-wide genetic diversity and exploiting machine learning to analyze genotypic data sets, are pushing the boundaries of what plant genotyping can offer. In this chapter, we highlight these innovations and discuss how they will accelerate and advance future genotyping efforts.


Assuntos
Genoma de Planta , Técnicas de Genotipagem , Genótipo , Análise de Sequência de DNA , Produtos Agrícolas/genética , Polimorfismo de Nucleotídeo Único
8.
Heliyon ; 9(9): e19237, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674843

RESUMO

Identifying the molecular and genetic basis of resistance to Sclerotinia stem rot (Sclerotinia sclerotiorum) is critical for developing long-term and cost-effective management of this disease in rapeseed/canola (Brassica napus). Current cultural or chemical management options provide, at best, only partial and/or sporadic control. Towards this, a B. napus breeding population (Mystic x Rainbow), including the parents, F1, F2, BC1P1 and BC1P2, was utilized in a field study to determine the inheritance pattern of Sclerotinia stem rot resistance (based on stem lesion length, SLL). Broad sense heritability was 0.58 for SLL and 0.44 for days to flowering (DTF). There was a significant negative correlation between SLL and stem diameter (SD) (r = -0.39) and between SLL and DTF (r = -0.28), suggesting co-selection of SD and DTF traits, along with SLL, should assist in improving overall resistance. Non-additive genetic variance was evident for SLL, DTF, and SD. In a genome wide association study (GWAS), a significant quantitative trait locus (QTL) was identified for SLL. Several putative candidate marker trait associations (MTA) were located within this QTL region. Overall, this study has provided valuable new understanding of inheritance of resistance to S. sclerotiorum, and has identified QTL, MTAs and transgressive segregants with high-level resistances. Together, these will foster more rapid selection for multiple traits associated with Sclerotinia stem rot resistance, by enabling breeders to make critical choices towards selecting/developing cultivars with enhanced resistance to this devastating pathogen.

9.
Front Plant Sci ; 14: 1051994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866377

RESUMO

Utilising resistance (R) genes, such as LepR1, against Leptosphaeria maculans, the causal agent of blackleg in canola (Brassica napus), could help manage the disease in the field and increase crop yield. Here we present a genome wide association study (GWAS) in B. napus to identify LepR1 candidate genes. Disease phenotyping of 104 B. napus genotypes revealed 30 resistant and 74 susceptible lines. Whole genome re-sequencing of these cultivars yielded over 3 million high quality single nucleotide polymorphisms (SNPs). GWAS in mixed linear model (MLM) revealed a total of 2,166 significant SNPs associated with LepR1 resistance. Of these SNPs, 2108 (97%) were found on chromosome A02 of B. napus cv. Darmor bzh v9 with a delineated LepR1_mlm1 QTL at 15.11-26.08 Mb. In LepR1_mlm1, there are 30 resistance gene analogs (RGAs) (13 nucleotide-binding site-leucine rich repeats (NLRs), 12 receptor-like kinases (RLKs), and 5 transmembrane-coiled-coil (TM-CCs)). Sequence analysis of alleles in resistant and susceptible lines was undertaken to identify candidate genes. This research provides insights into blackleg resistance in B. napus and assists identification of the functional LepR1 blackleg resistance gene.

10.
Front Plant Sci ; 13: 1008904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466237

RESUMO

Global agricultural industries are under pressure to meet the future food demand; however, the existing crop genetic diversity might not be sufficient to meet this expectation. Advances in genome sequencing technologies and availability of reference genomes for over 300 plant species reveals the hidden genetic diversity in crop wild relatives (CWRs), which could have significant impacts in crop improvement. There are many ex-situ and in-situ resources around the world holding rare and valuable wild species, of which many carry agronomically important traits and it is crucial for users to be aware of their availability. Here we aim to explore the available ex-/in- situ resources such as genebanks, botanical gardens, national parks, conservation hotspots and inventories holding CWR accessions. In addition we highlight the advances in availability and use of CWR genomic resources, such as their contribution in pangenome construction and introducing novel genes into crops. We also discuss the potential and challenges of modern breeding experimental approaches (e.g. de novo domestication, genome editing and speed breeding) used in CWRs and the use of computational (e.g. machine learning) approaches that could speed up utilization of CWR species in breeding programs towards crop adaptability and yield improvement.

11.
Plants (Basel) ; 11(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432742

RESUMO

Brassicaceae crops, including Brassica, Camelina and Raphanus species, are among the most economically important crops globally; however, their production is affected by several diseases. To predict cloned disease resistance (R) gene homologs (CDRHs), we used the protein sequences of 49 cloned R genes against fungal and bacterial diseases in Brassicaceae species. In this study, using 20 Brassicaceae genomes (17 wild and 3 domesticated species), 3172 resistance gene analogs (RGAs) (2062 nucleotide binding-site leucine-rich repeats (NLRs), 497 receptor-like protein kinases (RLKs) and 613 receptor-like proteins (RLPs)) were identified. CDRH clusters were also observed in Arabis alpina, Camelina sativa and Cardamine hirsuta with assigned chromosomes, consisting of 62 homogeneous (38 NLR, 17 RLK and 7 RLP clusters) and 10 heterogeneous RGA clusters. This study highlights the prevalence of CDRHs in the wild relatives of the Brassicaceae family, which may lay the foundation for rapid identification of functional genes and genomics-assisted breeding to develop improved disease-resistant Brassicaceae crop cultivars.

12.
Biology (Basel) ; 11(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35741342

RESUMO

Various diseases severely affect Brassica crops, leading to significant global yield losses and a reduction in crop quality. In this study, we used the complete protein sequences of 49 cloned resistance genes (R genes) that confer resistance to fungal and bacterial diseases known to impact species in the Brassicaceae family. Homology searches were carried out across Brassica napus, B. rapa, B. oleracea, B. nigra, B. juncea, B. carinata and Arabidopsis thaliana genomes. In total, 660 cloned disease R gene homologs (CDRHs) were identified across the seven species, including 431 resistance gene analogs (RGAs) (248 nucleotide binding site-leucine rich repeats (NLRs), 150 receptor-like protein kinases (RLKs) and 33 receptor-like proteins (RLPs)) and 229 non-RGAs. Based on the position and distribution of specific homologs in each of the species, we observed a total of 87 CDRH clusters composed of 36 NLR, 16 RLK and 3 RLP homogeneous clusters and 32 heterogeneous clusters. The CDRHs detected consistently across the seven species are candidates that can be investigated for broad-spectrum resistance, potentially providing resistance to multiple pathogens. The R genes identified in this study provide a novel resource for the future functional analysis and gene cloning of Brassicaceae R genes towards crop improvement.

13.
Plants (Basel) ; 11(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35956427

RESUMO

During crop domestication and breeding, wild plant species have been shaped into modern high-yield crops and adapted to the main agro-ecological regions. However, climate change will impact crop productivity in these regions, and agriculture needs to adapt to support future food production. On a global scale, crop wild relatives grow in more diverse environments than crop species, and so may host genes that could support the adaptation of crops to new and variable environments. Through identification of individuals with increased climate resilience we may gain a greater understanding of the genomic basis for this resilience and transfer this to crops. Pangenome analysis can help to identify the genes underlying stress responses in individuals harbouring untapped genomic diversity in crop wild relatives. The information gained from the analysis of these pangenomes can then be applied towards breeding climate resilience into existing crops or to re-domesticating crops, combining environmental adaptation traits with crop productivity.

14.
Plants (Basel) ; 11(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35567182

RESUMO

Soybean (Glycine max) is a legume species of significant economic and nutritional value. The yield of soybean continues to increase with the breeding of improved varieties, and this is likely to continue with the application of advanced genetic and genomic approaches for breeding. Genome technologies continue to advance rapidly, with an increasing number of high-quality genome assemblies becoming available. With accumulating data from marker arrays and whole-genome resequencing, studying variations between individuals and populations is becoming increasingly accessible. Furthermore, the recent development of soybean pangenomes has highlighted the significant structural variation between individuals, together with knowledge of what has been selected for or lost during domestication and breeding, information that can be applied for the breeding of improved cultivars. Because of this, resources such as genome assemblies, SNP datasets, pangenomes and associated databases are becoming increasingly important for research underlying soybean crop improvement.

15.
Plants (Basel) ; 11(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36297764

RESUMO

The global demand for oilseeds is increasing along with the human population. The family of Brassicaceae crops are no exception, typically harvested as a valuable source of oil, rich in beneficial molecules important for human health. The global capacity for improving Brassica yield has steadily risen over the last 50 years, with the major crop Brassica napus (rapeseed, canola) production increasing to ~72 Gt in 2020. In contrast, the production of Brassica mustard crops has fluctuated, rarely improving in farming efficiency. The drastic increase in global yield of B. napus is largely due to the demand for a stable source of cooking oil. Furthermore, with the adoption of highly efficient farming techniques, yield enhancement programs, breeding programs, the integration of high-throughput phenotyping technology and establishing the underlying genetics, B. napus yields have increased by >450 fold since 1978. Yield stability has been improved with new management strategies targeting diseases and pests, as well as by understanding the complex interaction of environment, phenotype and genotype. This review assesses the global yield and yield stability of agriculturally important oilseed Brassica species and discusses how contemporary farming and genetic techniques have driven improvements.

16.
Curr Opin Plant Biol ; 67: 102220, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35489163

RESUMO

Climate change and exponential population growth are exposing an immediate need for developing future crops that are highly resilient and adaptable to changing environments to maintain global food security in the next decade. Rigorous selection from long domestication history has rendered cultivated crops genetically disadvantaged, raising concerns in their ability to adapt to these new challenges and limiting their usefulness in breeding programmes. As a result, future crop improvement efforts must rely on integrating various genomic strategies ranging from high-throughput sequencing to machine learning, in order to exploit germplasm diversity and overcome bottlenecks created by domestication, expansive multi-dimensional phenotypes, arduous breeding processes, complex traits and big data.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Mudança Climática , Produtos Agrícolas/genética , Domesticação , Genômica , Melhoramento Vegetal/métodos
17.
AoB Plants ; 13(1): plab005, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613937

RESUMO

An understanding of genetic diversity and the population genetic processes that impact future population viability is vital for the management and recovery of declining populations of threatened species. Styphelia longissima (Ericaceae) is a critically endangered shrub, restricted to a single fragmented population near Eneabba, 250 km north of Perth, Western Australia. For this population, we sought to characterize population genetic variation and its spatial structure, and aspects of the mating portfolio, from which strategies that optimize the conservation of this diversity are identified. A comprehensive survey was carried out and 220 adults, and 106 seedlings from 14 maternal plants, were genotyped using 13 microsatellite markers. Levels of genetic variation and its spatial structure were assessed, and mating system parameters were estimated. Paternity was assigned to the offspring of a subsection of plants, which allowed for the calculation of realized pollen dispersal. Allelic richness and levels of expected heterozygosity were higher than predicted for a small isolated population. Spatial autocorrelation analysis identified fine-scale genetic structure at a scale of 20 m, but no genetic structure was found at larger scales. Mean outcrossing rate (t m = 0.66) reflects self-compatibility and a mixed-mating system. Multiple paternity was low, where 61 % of maternal siblings shared the same sire. Realized pollen dispersal was highly restricted, with 95 % of outcrossing events occurring at 7 m or less, and a mean pollen dispersal distance of 3.8 m. Nearest-neighbour matings were common (55 % of all outcross events), and 97 % of mating events were between the three nearest-neighbours. This study has provided critical baseline data on genetic diversity, mating system and pollen dispersal for future monitoring of S. longissima. Broadly applicable conservation strategies such as implementing a genetic monitoring plan, diluting spatial genetic structure in the natural population, genetically optimizing ex situ collections and incorporating genetic knowledge into translocations will help to manage the future erosion of the high genetic variation detected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA