Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Cancer ; 22(1): 99, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073853

RESUMO

BACKGROUND: The gut microbiome is implicated as a marker of response to immune checkpoint inhibitors (ICI) based on preclinical mouse models and preliminary observations in limited patient series. Furthermore, early studies suggest faecal microbial transfer may have therapeutic potential, converting ICI non-responders into responders. So far, identification of specific responsible bacterial taxa has been inconsistent, which limits future application. The MITRE study will explore and validate a microbiome signature in a larger scale prospective study across several different cancer types. METHODS: Melanoma, renal cancer and non-small cell lung cancer patients who are planned to receive standard immune checkpoint inhibitors are being recruited to the MITRE study. Longitudinal stool samples are collected prior to treatment, then at 6 weeks, 3, 6 and 12 months during treatment, or at disease progression/recurrence (whichever is sooner), as well as after a severe (≥grade 3 CTCAE v5.0) immune-related adverse event. Additionally, whole blood, plasma, buffy coat, RNA and peripheral blood mononuclear cells (PBMCs) is collected at similar time points and will be used for exploratory analyses. Archival tumour tissue, tumour biopsies at progression/relapse, as well as any biopsies from body organs collected after a severe toxicity are collected. The primary outcome measure is the ability of the microbiome signature to predict 1 year progression-free survival (PFS) in patients with advanced disease. Secondary outcomes include microbiome correlations with toxicity and other efficacy end-points. Biosamples will be used to explore immunological and genomic correlates. A sub-study will evaluate both COVID-19 antigen and antibody associations with the microbiome. DISCUSSION: There is an urgent need to identify biomarkers that are predictive of treatment response, resistance and toxicity to immunotherapy. The data generated from this study will both help inform patient selection for these drugs and provide information that may allow therapeutic manipulation of the microbiome to improve future patient outcomes. TRIAL REGISTRATION: NCT04107168 , ClinicalTrials.gov, registered 09/27/2019. Protocol V3.2 (16/04/2021).


Assuntos
Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico/uso terapêutico , Consórcios Microbianos , Neoplasias/terapia , Anticorpos Antivirais/análise , Antígenos Virais/análise , Carcinoma Pulmonar de Células não Pequenas/terapia , Progressão da Doença , Fezes/microbiologia , Microbioma Gastrointestinal/imunologia , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Renais/terapia , Neoplasias Pulmonares/terapia , Melanoma/terapia , Consórcios Microbianos/imunologia , Intervalo Livre de Progressão , Estudos Prospectivos , SARS-CoV-2/imunologia , Neoplasias Cutâneas/terapia
2.
Cell Syst ; 12(12): 1144-1159.e6, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34529928

RESUMO

Pairs of paralogs may share common functionality and, hence, display synthetic lethal interactions. As the majority of human genes have an identifiable paralog, exploiting synthetic lethality between paralogs may be a broadly applicable approach for targeting gene loss in cancer. However, only a biased subset of human paralog pairs has been tested for synthetic lethality to date. Here, by analyzing genome-wide CRISPR screens and molecular profiles of over 700 cancer cell lines, we identify features predictive of synthetic lethality between paralogs, including shared protein-protein interactions and evolutionary conservation. We develop a machine-learning classifier based on these features to predict which paralog pairs are most likely to be synthetic lethal and to explain why. We show that our classifier accurately predicts the results of combinatorial CRISPR screens in cancer cell lines and furthermore can distinguish pairs that are synthetic lethal in multiple cell lines from those that are cell-line specific. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Neoplasias , Mutações Sintéticas Letais , Linhagem Celular Tumoral , Humanos , Aprendizado de Máquina , Neoplasias/genética , Mutações Sintéticas Letais/genética
3.
Nat Commun ; 12(1): 1302, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637726

RESUMO

Genetic redundancy has evolved as a way for human cells to survive the loss of genes that are single copy and essential in other organisms, but also allows tumours to survive despite having highly rearranged genomes. In this study we CRISPR screen 1191 gene pairs, including paralogues and known and predicted synthetic lethal interactions to identify 105 gene combinations whose co-disruption results in a loss of cellular fitness. 27 pairs influence fitness across multiple cell lines including the paralogues FAM50A/FAM50B, two genes of unknown function. Silencing of FAM50B occurs across a range of tumour types and in this context disruption of FAM50A reduces cellular fitness whilst promoting micronucleus formation and extensive perturbation of transcriptional programmes. Our studies reveal the fitness effects of FAM50A/FAM50B in cancer cells.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genoma , Proteínas/genética , Animais , Apoptose , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Técnicas de Inativação de Genes , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Ligação a RNA/genética , Transcriptoma
4.
Nat Commun ; 11(1): 3698, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703943

RESUMO

Intellectual disability (ID) is a heterogeneous clinical entity and includes an excess of males who harbor variants on the X-chromosome (XLID). We report rare FAM50A missense variants in the original Armfield XLID syndrome family localized in Xq28 and four additional unrelated males with overlapping features. Our fam50a knockout (KO) zebrafish model exhibits abnormal neurogenesis and craniofacial patterning, and in vivo complementation assays indicate that the patient-derived variants are hypomorphic. RNA sequencing analysis from fam50a KO zebrafish show dysregulation of the transcriptome, with augmented spliceosome mRNAs and depletion of transcripts involved in neurodevelopment. Zebrafish RNA-seq datasets show a preponderance of 3' alternative splicing events in fam50a KO, suggesting a role in the spliceosome C complex. These data are supported with transcriptomic signatures from cell lines derived from affected individuals and FAM50A protein-protein interaction data. In sum, Armfield XLID syndrome is a spliceosomopathy associated with aberrant mRNA processing during development.


Assuntos
Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação/genética , Proteínas de Ligação a RNA/genética , Spliceossomos/metabolismo , Proteínas de Peixe-Zebra/genética , Adulto , Animais , Núcleo Celular/metabolismo , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Família , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto/genética , Células NIH 3T3 , Linhagem , Fenótipo , Transporte Proteico , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/metabolismo , Síndrome , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA