Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Plant Cell Environ ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725360

RESUMO

Terrestrial water fluxes are substantially mediated by vegetation, while the distribution, growth, health, and mortality of plants are strongly influenced by the availability of water. These interactions, playing out across multiple spatial and temporal scales, link the disciplines of plant ecophysiology and ecohydrology. Despite this connection, the disciplines have provided complementary, but largely independent, perspectives on the soil-plant-atmosphere continuum since their crystallization as modern scientific disciplines in the late 20th century. This review traces the development of the two disciplines, from their respective origins in engineering and ecology, their largely independent growth and maturation, and the eventual development of common conceptual and quantitative frameworks. This common ground has allowed explicit coupling of the disciplines to better understand plant function. Case studies both illuminate the limitations of the disciplines working in isolation, and reveal the exciting possibilities created by consilience between the disciplines. The histories of the two disciplines suggest opportunities for new advances will arise from sharing methodologies, working across multiple levels of complexity, and leveraging new observational technologies. Practically, these exchanges can be supported by creating shared scientific spaces. This review argues that consilience and collaboration are essential for robust and evidence-based predictions and policy responses under global change.

2.
Plant Cell Environ ; 46(9): 2726-2746, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37338073

RESUMO

Observations show vulnerability segmentation between stems and leaves is highly variable within and between environments. While a number of species exhibit conventional vulnerability segmentation (stem P 50 < ${P}_{50}\lt $ leaf P 50 ${P}_{50}$ ), others exhibit no vulnerability segmentation and others reverse vulnerability segmentation (stem P 50 > ${P}_{50}\gt $ leaf P 50 ${P}_{50}$ ). We developed a hydraulic model to test hypotheses about vulnerability segmentation and how it interacts with other traits to impact plant conductance. We do this using a series of experiments across a broad parameter space and with a case study of two species with contrasting vulnerability segmentation patterns: Quercus douglasii and Populus trichocarpa. We found that while conventional vulnerability segmentation helps to preserve conductance in stem tissues, reverse vulnerability segmentation can better maintain conductance across the combined stem-leaf hydraulic pathway, particularly when plants have more vulnerable P 50 ${P}_{50}$ s and have hydraulic segmentation with greater resistance in the leaves. These findings show that the impacts of vulnerability segmentation are dependent upon other plant traits, notably hydraulic segmentation, a finding that could assist in the interpretation of variable observations of vulnerability segmentation. Further study is needed to examine how vulnerability segmentation impacts transpiration rates and recovery from water stress.


Assuntos
Transpiração Vegetal , Quercus , Folhas de Planta , Transporte Biológico , Fenótipo , Caules de Planta , Xilema
3.
Glob Chang Biol ; 28(11): 3489-3514, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315565

RESUMO

In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those 'next users' of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.


Assuntos
Dióxido de Carbono , Ecossistema , Austrália , Ciclo do Carbono , Mudança Climática
4.
New Phytol ; 229(5): 2562-2575, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33118166

RESUMO

●Plants are characterized by the iso/anisohydry continuum depending on how they regulate leaf water potential (ΨL ). However, how iso/anisohydry changes over time in response to year-to-year variations in environmental dryness and how such responses vary across different regions remains poorly characterized. ●We investigated how dryness, represented by aridity index, affects the interannual variability of ecosystem iso/anisohydry at the regional scale, estimated using satellite microwave vegetation optical depth (VOD) observations. This ecosystem-level analysis was further complemented with published field observations of species-level ΨL . ●We found different behaviors in the directionality and sensitivity of isohydricity (σ) with respect to the interannual variation of dryness in different ecosystems. These behaviors can largely be differentiated by the average dryness of the ecosystem itself: in mesic ecosystems, σ decreases in drier years with a higher sensitivity to dryness; in xeric ecosystems, σ increases in drier years with a lower sensitivity to dryness. These results were supported by the species-level synthesis. ●Our study suggests that how plants adjust their water use across years - as revealed by their interannual variability in isohydricity - depends on the dryness of plants' living environment. This finding advances our understanding of plant responses to drought at regional scales.


Assuntos
Secas , Ecossistema , Folhas de Planta , Plantas , Água
5.
Glob Chang Biol ; 26(5): 3091-3107, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32056344

RESUMO

Drought extent and severity have increased and are predicted to continue to increase in many parts of the world. Understanding tree vulnerability to drought at both individual and species levels is key to ongoing forest management and preparation for future transitions in community composition. The influence of subsurface hydrologic processes is particularly important in water-limited ecosystems, and is an under-studied aspect of tree drought vulnerability. With California's 2013-2016 extraordinary drought as a natural experiment, we studied four co-occurring woodland tree species, blue oak (Quercus douglasii), valley oak (Quercus lobata), gray pine (Pinus sabiniana), and California juniper (Juniperus californica), examining drought vulnerability as a function of climate, lithology and hydrology using regional aerial dieback surveys and site-scale field surveys. We found that in addition to climatic drought severity (i.e., rainfall), subsurface processes explained variation in drought vulnerability within and across species at both scales. Regionally for blue oak, severity of dieback was related to the bedrock lithology, with higher mortality on igneous and metamorphic substrates, and to regional reductions in groundwater. At the site scale, access to deep subsurface water, evidenced by stem water stable isotope composition, was related to canopy condition across all species. Along hillslope gradients, channel locations supported similar environments in terms of water stress across a wide climatic gradient, indicating that subsurface hydrology mediates species' experience of drought, and that areas associated with persistent access to subsurface hydrologic resources may provide important refugia at species' xeric range edges. Despite this persistent overall influence of the subsurface environment, individual species showed markedly different response patterns. We argue that hydrologic niche segregation can be a useful lens through which to interpret these differences in vulnerability to climatic drought and climate change.


Assuntos
Secas , Árvores , Ecossistema , Hidrologia , Tempo (Meteorologia)
6.
New Phytol ; 223(3): 1296-1306, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31059125

RESUMO

Vulnerability to embolism varies between con-generic species distributed along aridity gradients, yet little is known about intraspecific variation and its drivers. Even less is known about intraspecific variation in tissues other than stems, despite results suggesting that roots, stems and leaves can differ in vulnerability. We hypothesized that intraspecific variation in vulnerability in leaves and stems is adaptive and driven by aridity. We quantified leaf and stem vulnerability of Quercus douglasii using the optical technique. To assess contributions of genetic variation and phenotypic plasticity to within-species variation, we quantified the vulnerability of individuals growing in a common garden, but originating from populations along an aridity gradient, as well as individuals from the same wild populations. Intraspecific variation in water potential at which 50% of total embolism in a tissue is observed (P50 ) was explained mostly by differences between individuals (>66% of total variance) and tissues (16%). There was little between-population variation in leaf/stem P50 in the garden, which was not related to site of origin aridity. Unexpectedly, we observed a positive relationship between wild individual stem P50 and aridity. Although there is no local adaptation and only minor phenotypic plasticity in leaf/stem vulnerability in Q. douglasii, high levels of potentially heritable variation within populations or strong environmental selection could contribute to adaptive responses under future climate change.


Assuntos
Adaptação Fisiológica/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Quercus/fisiologia , Xilema/fisiologia , Análise de Variância , California , Clima , Geografia , Especificidade da Espécie
7.
Plant Physiol ; 177(3): 1066-1077, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29789436

RESUMO

Although recent findings suggest that xylem embolism represents a significant, drought-induced damaging process in land plants, substantial debate surrounds the capacity of long-vesseled, ring-porous species to resist embolism. We investigated whether recent methodological developments could help resolve this controversy within Quercus, a long-vesseled, ring-porous temperate angiosperm genus, and shed further light on the importance of xylem vulnerability to embolism as an indicator of drought tolerance. We used the optical technique to quantify leaf and stem xylem vulnerability to embolism of eight Quercus species from the Mediterranean-type climate region of California to examine absolute measures of resistance to embolism as well as any potential hydraulic segmentation between tissue types. We demonstrated that our optical assessment reflected flow impairment for a subset of our sample species by quantifying changes in leaf hydraulic conductance in dehydrating branches. Air-entry water potential varied 2-fold in leaves, ranging from -1.7 ± 0.25 MPa to -3.74 ± 0.23 MPa, and 4-fold in stems, ranging from -1.17 ± 0.04 MPa to -4.91 ± 0.3 MPa. Embolism occurred earlier in leaves than in stems in only one out of eight sample species, and plants always lost turgor before experiencing stem embolism. Our results show that long-vesseled North American Quercus species are more resistant to embolism than previously thought and support the hypothesis that avoiding stem embolism is a critical component of drought tolerance in woody trees. Accurately quantifying xylem vulnerability to embolism is essential for understanding species distributions along aridity gradients and predicting plant mortality during drought.


Assuntos
Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Quercus/fisiologia , Xilema/fisiologia , California , Especificidade da Espécie
8.
Plant Cell Environ ; 42(4): 1104-1111, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30513545

RESUMO

Despite the appeal of the iso/anisohydric framework for classifying plant drought responses, recent studies have shown that such classifications can be strongly affected by a plant's environment. Here, we present measured in situ drought responses to demonstrate that apparent isohydricity can be conflated with environmental conditions that vary over space and time. In particular, we (a) use data from an oak species (Quercus douglasii) during the 2012-2015 extreme drought in California to demonstrate how temporal and spatial variability in the environment can influence plant water potential dynamics, masking the role of traits; (b) explain how these environmental variations might arise from climatic, topographic, and edaphic variability; (c) illustrate, through a "common garden" thought experiment, how existing trait-based or response-based isohydricity metrics can be confounded by these environmental variations, leading to Type-1 (false positive) and Type-2 (false negative) errors; and (d) advocate for the use of model-based approaches for formulating alternate classification schemes. Building on recent insights from greenhouse and vineyard studies, we offer additional evidence across multiple field sites to demonstrate the importance of spatial and temporal drivers of plants' apparent isohydricity. This evidence challenges the use of isohydricity indices, per se, to characterize plant water relations at the global scale.


Assuntos
Meio Ambiente , Quercus/fisiologia , Estresse Fisiológico , California , Clima , Desidratação , Secas , Quercus/metabolismo , Estresse Fisiológico/fisiologia , Água/metabolismo
9.
Ecol Lett ; 21(11): 1723-1736, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30152132

RESUMO

Many recent studies on drought-induced vegetation mortality have explored how plant functional traits, and classifications of such traits along axes of, for example, isohydry-anisohydry, might contribute to predicting drought survival and recovery. As these studies proliferate, the consistency and predictive value of such classifications need to be carefully examined. Here, we outline the basis for a systematic classification of plant drought responses that accounts for both environmental conditions and functional traits. We use non-dimensional analysis to integrate plant traits and metrics of environmental variation into groups that can be associated with alternative drought stress pathways (hydraulic failure and carbon limitation), and demonstrate that these groupings predict physiological drought outcomes using both synthetic and measured data. In doing so, we aim to untangle some confounding effects of environment and trait variations that undermine current classification schemes, advocate for more careful treatment of the environmental context within which plants experience and respond to drought, and outline a pathway towards a general classification of drought vulnerability.


Assuntos
Carbono , Secas , Água
10.
Glob Chang Biol ; 23(9): 3758-3769, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28132414

RESUMO

Current models used for predicting vegetation responses to climate change are often guided by the dichotomous needs to resolve either (i) internal plant water status as a proxy for physiological vulnerability or (ii) external water and carbon fluxes and atmospheric feedbacks. Yet, accurate representation of fluxes does not always equate to accurate predictions of vulnerability. We resolve this discrepancy using a hydrodynamic framework that simultaneously tracks plant water status and water uptake. We couple a minimalist plant hydraulics model with a soil moisture model and, for the first time, translate rainfall variability at multiple timescales - with explicit descriptions at daily, seasonal, and interannual timescales - into a physiologically meaningful metric for the risk of hydraulic failure. The model, parameterized with measured traits from chaparral species native to Southern California, shows that apparently similar transpiration patterns throughout the dry season can emerge from disparate plant water potential trajectories, and vice versa. The parsimonious set of parameters that captures the role of many traits across the soil-plant-atmosphere continuum is then used to establish differences in species sensitivities to shifts in seasonal rainfall statistics, showing that co-occurring species may diverge in their risk of hydraulic failure despite minimal changes to their seasonal water use. The results suggest potential shifts in species composition in this region due to species-specific changes in hydraulic risk. Our process-based approach offers a quantitative framework for understanding species sensitivity across multiple timescales of rainfall variability and provides a promising avenue toward incorporating interactions of temporal variability and physiological mechanisms into drought response models.


Assuntos
Mudança Climática , Transpiração Vegetal , California , Estações do Ano , Solo , Água
11.
Glob Chang Biol ; 23(8): 2941-2961, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28318131

RESUMO

Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow.


Assuntos
Mudança Climática , Ecossistema , Refúgio de Vida Selvagem , California , Clima , Hidrologia , Plantas
12.
Bioscience ; 65(8): 822-829, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26955083

RESUMO

The liberalization of marijuana policies, including the legalization of medical and recreational marijuana, is sweeping the United States and other countries. Marijuana cultivation can have significant negative collateral effects on the environment that are often unknown or overlooked. Focusing on the state of California, where by some estimates 60%-70% of the marijuana consumed in the United States is grown, we argue that (a) the environmental harm caused by marijuana cultivation merits a direct policy response, (b) current approaches to governing the environmental effects are inadequate, and

13.
Glob Chang Biol ; 20(4): 1299-312, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24515971

RESUMO

Global change will simultaneously impact many aspects of climate, with the potential to exacerbate the risks posed by plant pathogens to agriculture and the natural environment; yet, most studies that explore climate impacts on plant pathogen ranges consider individual climatic factors separately. In this study, we adopt a stochastic modeling approach to address multiple pathways by which climate can constrain the range of the generalist plant pathogen Phytophthora cinnamomi (Pc): through changing winter soil temperatures affecting pathogen survival; spring soil temperatures and thus pathogen metabolic rates; and changing spring soil moisture conditions and thus pathogen growth rates through host root systems. We apply this model to the southwestern USA for contemporary and plausible future climate scenarios and evaluate the changes in the potential range of Pc. The results indicate that the plausible range of this pathogen in the southwestern USA extends over approximately 200,000 km(2) under contemporary conditions. While warming temperatures as projected by the IPCC A2 and B1 emissions scenarios greatly expand the range over which the pathogen can survive winter, projected reductions in spring rainfall reduce its feasible habitat, leading to spatially complex patterns of changing risk. The study demonstrates that temperature and rainfall changes associated with possible climate futures in the southwestern USA have confounding impacts on the range of Pc, suggesting that projections of future pathogen dynamics and ranges should account for multiple pathways of climate-pathogen interaction.


Assuntos
Modelos Biológicos , Phytophthora/fisiologia , Phytophthora/patogenicidade , Mudança Climática , Doenças das Plantas/microbiologia , Chuva , Estações do Ano , Microbiologia do Solo , Sudoeste dos Estados Unidos , Processos Estocásticos , Temperatura
14.
Am Nat ; 175(1): E10-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19911904

RESUMO

Spatial ecological patterns are usually ascribed to Turing-type reaction-diffusion or scale-dependent feedback processes, but morphologically indistinguishable patterns can be produced by instabilities in fluid flow. We present a new hypothesis that suggests that fluid convection and chill damage to plants could form vegetation patterns with wavelengths approximately 1-2 times the plant height. Previous hypotheses for small-scale vegetation pattern formation relied on a Turing process driven by competition for water, which is thought to occur in large vegetation patterns. Predictions of the new hypothesis were consistent with properties of natural grass patterns in North Carolina, contradicting the Turing hypothesis. These results indicate that similarities in pattern morphology should not be interpreted as implying similarities in the pattern-forming processes, that small-wavelength vegetation patterns may arise from mechanisms that are distinct from those generating long-wavelength vegetation patterns, and that fluid instabilities should be recognized as a cause of ecological patterns.


Assuntos
Convecção , Modelos Teóricos , Poaceae/crescimento & desenvolvimento , North Carolina , Temperatura
15.
Sci Rep ; 7(1): 219, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28303013

RESUMO

Studies of the hydroclimate at regional scales rely on spatial rainfall data products, derived from remotely-sensed (RS) and in-situ (IS, rain gauge) observations. Because regional rainfall cannot be directly measured, spatial data products are biased. These biases pose a source of uncertainty in environmental analyses, attributable to the choices made by data-users in selecting a representation of rainfall. We use the rainforest-savanna transition region in Brazil to show differences in the statistics describing rainfall across nine RS and interpolated-IS daily rainfall datasets covering the period of 1998-2013. These differences propagate into estimates of temporal trends in monthly rainfall and descriptive hydroclimate indices. Rainfall trends from different datasets are inconsistent at river basin scales, and the magnitude of index differences is comparable to the estimated bias in global climate model projections. To address this uncertainty, we evaluate the correspondence of different rainfall datasets with streamflow from 89 river basins. We demonstrate that direct empirical comparisons between rainfall and streamflow provide a method for evaluating rainfall dataset performance across multiple areal (basin) units. These results highlight the need for users of rainfall datasets to quantify this "data selection uncertainty" problem, and either justify data use choices, or report the uncertainty in derived results.

16.
Mov Ecol ; 2(1): 7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520817

RESUMO

Seed dispersal alters gene flow, reproduction, migration and ultimately spatial organization of dryland ecosystems. Because many seeds in drylands lack adaptations for long-distance dispersal, seed transport by secondary processes such as tumbling in the wind or mobilization in overland flow plays a dominant role in determining where seeds ultimately germinate. Here, recent developments in modeling runoff generation in spatially complex dryland ecosystems are reviewed with the aim of proposing improvements to mechanistic modeling of seed dispersal processes. The objective is to develop a physically-based yet operational framework for determining seed dispersal due to surface runoff, a process that has gained recent experimental attention. A Buoyant OBject Coupled Eulerian - Lagrangian Closure model (BOB-CELC) is proposed to represent seed movement in shallow surface flows. The BOB-CELC is then employed to investigate the sensitivity of seed transport to landscape and storm properties and to the spatial configuration of vegetation patches interspersed within bare earth. The potential to simplify seed transport outcomes by considering the limiting behavior of multiple runoff events is briefly considered, as is the potential for developing highly mechanistic, spatially explicit models that link seed transport, vegetation structure and water movement across multiple generations of dryland plants.

17.
Glob Chang Biol ; 19(6): 1720-35, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23505130

RESUMO

Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward conditions of higher wind velocity, promoting longer dispersal distances and faster migration. However, another suite of international studies also recently highlighted a global decrease in near-surface wind speeds, or 'global stilling'. This study assessed the implications of both factors on potential plant population migration rates, using a mechanistic modeling framework. Nonrandom abscission was investigated using models of three seed release mechanisms: (i) a simple drag model; (ii) a seed deflection model; and (iii) a 'wear and tear' model. The models generated a single functional relationship between the frequency of seed release and statistics of the near-surface wind environment, independent of the abscission mechanism. An Inertial-Particle, Coupled Eulerian-Lagrangian Closure model (IP-CELC) was used to investigate abscission effects on seed dispersal kernels and plant population migration rates under contemporary and potential future wind conditions (based on reported global stilling trends). The results confirm that nonrandom seed abscission increased dispersal distances, particularly for light seeds. The increases were mitigated by two physical feedbacks: (i) although nonrandom abscission increased the initial acceleration of seeds from rest, the sensitivity of the seed dispersal to this initial condition declined as the wind speed increased; and (ii) while nonrandom abscission increased the mean dispersal length, it reduced the kurtosis of seasonal dispersal kernels, and thus the chance of long-distance dispersal. Wind stilling greatly reduced the modeled migration rates under biased seed release conditions. Thus, species that require high wind velocities for seed abscission could experience threshold-like reductions in dispersal and migration potential if near-surface wind speeds continue to decline.


Assuntos
Fenômenos Fisiológicos Vegetais , Sementes/fisiologia , Vento , Biodiversidade , Modelos Teóricos
18.
Philos Trans A Math Phys Eng Sci ; 371(2004): 20120359, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24471268

RESUMO

Dryland ecosystems commonly exhibit periodic bands of vegetation, thought to form due to competition between individual plants for heterogeneously distributed water. In this paper, we develop a Fourier method for locally identifying the pattern wavenumber and orientation, and apply it to aerial images from a region of vegetation patterning near Fort Stockton, TX, USA. We find that the local pattern wavelength and orientation are typically coherent, but exhibit both rapid and gradual variation driven by changes in hillslope gradient and orientation, the potential for water accumulation, or soil type. Endogenous pattern dynamics, when simulated for spatially homogeneous topographic and vegetation conditions, predict pattern properties that are much less variable than the orientation and wavelength observed in natural systems. Our local pattern analysis, combined with ancillary datasets describing soil and topographic variation, highlights a largely unexplored correlation between soil depth, pattern coherence, vegetation cover and pattern wavelength. It also, surprisingly, suggests that downslope accumulation of water may play a role in changing vegetation pattern properties.


Assuntos
Clima Desértico , Ecossistema , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Modelos Estatísticos , Reconhecimento Automatizado de Padrão/métodos , Desenvolvimento Vegetal , Estações do Ano
19.
Philos Trans A Math Phys Eng Sci ; 371(2004): 20120359, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24191113

RESUMO

Dryland ecosystems commonly exhibit periodic bands of vegetation, thought to form due to competition between individual plants for heterogeneously distributed water. In this paper, we develop a Fourier method for locally identifying the pattern wavenumber and orientation, and apply it to aerial images from a region of vegetation patterning near Fort Stockton, TX, USA. We find that the local pattern wavelength and orientation are typically coherent, but exhibit both rapid and gradual variation driven by changes in hillslope gradient and orientation, the potential for water accumulation, or soil type. Endogenous pattern dynamics, when simulated for spatially homogeneous topographic and vegetation conditions, predict pattern properties that are much less variable than the orientation and wavelength observed in natural systems. Our local pattern analysis, combined with ancillary datasets describing soil and topographic variation, highlights a largely unexplored correlation between soil depth, pattern coherence, vegetation cover and pattern wavelength. It also, surprisingly, suggests that downslope accumulation of water may play a role in changing vegetation pattern properties.


Assuntos
Ecossistema , Modelos Biológicos , Plantas , Solo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA