RESUMO
Importance: Recommendations in the United States suggest limiting the number of patient records displayed in an electronic health record (EHR) to 1 at a time, although little evidence supports this recommendation. Objective: To assess the risk of wrong-patient orders in an EHR configuration limiting clinicians to 1 record vs allowing up to 4 records opened concurrently. Design, Setting, and Participants: This randomized clinical trial included 3356 clinicians at a large health system in New York and was conducted from October 2015 to April 2017 in emergency department, inpatient, and outpatient settings. Interventions: Clinicians were randomly assigned in a 1:1 ratio to an EHR configuration limiting to 1 patient record open at a time (restricted; n = 1669) or allowing up to 4 records open concurrently (unrestricted; n = 1687). Main Outcomes and Measures: The unit of analysis was the order session, a series of orders placed by a clinician for a single patient. The primary outcome was order sessions that included 1 or more wrong-patient orders identified by the Wrong-Patient Retract-and-Reorder measure (an electronic query that identifies orders placed for a patient, retracted, and then reordered shortly thereafter by the same clinician for a different patient). Results: Among the 3356 clinicians who were randomized (mean [SD] age, 43.1 [12.5] years; mean [SD] experience at study site, 6.5 [6.0] years; 1894 females [56.4%]), all provided order data and were included in the analysis. The study included 12â¯140â¯298 orders, in 4â¯486â¯631 order sessions, placed for 543â¯490 patients. There was no significant difference in wrong-patient order sessions per 100â¯000 in the restricted vs unrestricted group, respectively, overall (90.7 vs 88.0; odds ratio [OR], 1.03 [95% CI, 0.90-1.20]; P = .60) or in any setting (ED: 157.8 vs 161.3, OR, 1.00 [95% CI, 0.83-1.20], P = .96; inpatient: 185.6 vs 185.1, OR, 0.99 [95% CI, 0.89-1.11]; P = .86; or outpatient: 7.9 vs 8.2, OR, 0.94 [95% CI, 0.70-1.28], P = .71). The effect did not differ among settings (P for interaction = .99). In the unrestricted group overall, 66.2% of the order sessions were completed with 1 record open, including 34.5% of ED, 53.7% of inpatient, and 83.4% of outpatient order sessions. Conclusions and Relevance: A strategy that limited clinicians to 1 EHR patient record open compared with a strategy that allowed up to 4 records open concurrently did not reduce the proportion of wrong-patient order errors. However, clinicians in the unrestricted group placed most orders with a single record open, limiting the power of the study to determine whether reducing the number of records open when placing orders reduces the risk of wrong-patient order errors. Trial Registration: clinicaltrials.gov Identifier: NCT02876588.
Assuntos
Registros Eletrônicos de Saúde , Erros Médicos/estatística & dados numéricos , Centros Médicos Acadêmicos , Adulto , Prestação Integrada de Cuidados de Saúde , Feminino , Humanos , Masculino , Erros Médicos/prevenção & controle , Sistemas Computadorizados de Registros Médicos/organização & administração , Pessoa de Meia-Idade , Comportamento Multitarefa , Near Miss/estatística & dados numéricos , Segurança do Paciente , Carga de TrabalhoRESUMO
Our objectives were to evaluate the role of procalcitonin in identifying bacterial co-infections in hospitalized COVID-19 patients and quantify antibiotic prescribing during the 2020 pandemic surge. Hospitalized COVID-19 patients with both a procalcitonin test and blood or respiratory culture sent on admission were included in this retrospective study. Confirmed co-infection was determined by an infectious diseases specialist. In total, 819 patients were included; 335 (41%) had an elevated procalcitonin (>0.5 ng/mL) and of these, 42 (13%) had an initial bacterial co-infection. Positive predictive value of elevated procalcitonin for co-infection was 13% while the negative predictive value was 94%. Ninety-six percent of patients with an elevated procalcitonin received antibiotics (median 6 days of therapy), compared to 82% with low procalcitonin (median 4 days of therapy) (adjusted OR:3.3, P < 0.001). We observed elevated initial procalcitonin in many COVID patients without concurrent bacterial co-infections which potentially contributed to antibiotic over-prescribing.
Assuntos
Infecções Bacterianas , COVID-19 , Coinfecção , Pró-Calcitonina , Antibacterianos/uso terapêutico , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/tratamento farmacológico , Biomarcadores , COVID-19/complicações , Calcitonina , Peptídeo Relacionado com Gene de Calcitonina , Coinfecção/epidemiologia , Humanos , Pró-Calcitonina/análise , Estudos RetrospectivosRESUMO
We partnered with the US Department of Health and Human Services to treat high-risk, nonadmitted coronavirus disease 2019 (COVID-19) patients with bamlanivimab in the Bronx, New York per Emergency Use Authorization criteria. Increasing posttreatment hospitalizations were observed monthly between December 2020 and March 2021 in parallel to the emergence of severe acute respiratory syndrome coronavirus 2 variants in New York City.
RESUMO
Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as a treatment for coronavirus disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200 mL of CCP with a spike protein IgG titer ≥ 1:2430 (median 1:47,385) within 72 hours of admission with propensity score-matched controls cared for at a medical center in the Bronx, between April 13 and May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroid use, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared with matched controls, CCP recipients less than 65 years had 4-fold lower risk of mortality and 4-fold lower risk of deterioration in oxygenation or mortality at day 28. For CCP recipients, pretransfusion spike protein IgG, IgM, and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients less than 65 years, but data from controlled trials are needed to validate this finding and establish the effect of aging on CCP efficacy.
Assuntos
Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais/administração & dosagem , COVID-19/terapia , SARS-CoV-2/imunologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/virologia , Feminino , Mortalidade Hospitalar , Humanos , Imunização Passiva/métodos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Pontuação de Propensão , Estudos Retrospectivos , Glicoproteína da Espícula de Coronavírus/imunologia , Resultado do Tratamento , Soroterapia para COVID-19RESUMO
Patients with cancer are presumed to be at increased risk from COVID-19 infection-related fatality due to underlying malignancy, treatment-related immunosuppression, or increased comorbidities. A total of 218 COVID-19-positive patients from March 18, 2020, to April 8, 2020, with a malignant diagnosis were identified. A total of 61 (28%) patients with cancer died from COVID-19 with a case fatality rate (CFR) of 37% (20/54) for hematologic malignancies and 25% (41/164) for solid malignancies. Six of 11 (55%) patients with lung cancer died from COVID-19 disease. Increased mortality was significantly associated with older age, multiple comorbidities, need for ICU support, and elevated levels of D-dimer, lactate dehydrogenase, and lactate in multivariate analysis. Age-adjusted CFRs in patients with cancer compared with noncancer patients at our institution and New York City reported a significant increase in case fatality for patients with cancer. These data suggest the need for proactive strategies to reduce likelihood of infection and improve early identification in this vulnerable patient population. SIGNIFICANCE: COVID-19 in patients with cancer is associated with a significantly increased risk of case fatality, suggesting the need for proactive strategies to reduce likelihood of infection and improve early identification in this vulnerable patient population.This article is highlighted in the In This Issue feature, p. 890.
Assuntos
Betacoronavirus , Infecções por Coronavirus/complicações , Neoplasias/mortalidade , Pneumonia Viral/complicações , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Criança , Pré-Escolar , Feminino , Hospitais Urbanos , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Neoplasias/complicações , New York/epidemiologia , Pandemias , SARS-CoV-2 , Adulto JovemRESUMO
Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as treatment for Coronavirus Disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200mL of CCP with a Spike protein IgG titer ≥1:2,430 (median 1:47,385) within 72 hours of admission to propensity score-matched controls cared for at a medical center in the Bronx, between April 13 to May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroids, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared to matched controls, CCP recipients <65 years had 4-fold lower mortality and 4-fold lower deterioration in oxygenation or mortality at day 28. For CCP recipients, pre-transfusion Spike protein IgG, IgM and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients <65 years, but data from controlled trials is needed to validate this finding and establish the effect of ageing on CCP efficacy.