RESUMO
The early life environment programmes cortical architecture and cognition across the life course. A measure of cortical organisation that integrates information from multimodal MRI and is unbound by arbitrary parcellations has proven elusive, which hampers efforts to uncover the perinatal origins of cortical health. Here, we use the Vogt-Bailey index to provide a fine-grained description of regional homogeneities and sharp variations in cortical microstructure based on feature gradients, and we investigate the impact of being born preterm on cortical development at term-equivalent age. Compared with term-born controls, preterm infants have a homogeneous microstructure in temporal and occipital lobes, and the medial parietal, cingulate, and frontal cortices, compared with term infants. These observations replicated across two independent datasets and were robust to differences that remain in the data after matching samples and alignment of processing and quality control strategies. We conclude that cortical microstructural architecture is altered in preterm infants in a spatially distributed rather than localised fashion.
Assuntos
Recém-Nascido Prematuro , Nascimento Prematuro , Lactente , Gravidez , Feminino , Recém-Nascido , Humanos , Nascimento Prematuro/diagnóstico por imagem , Encéfalo , Imageamento por Ressonância Magnética , CogniçãoRESUMO
PURPOSE: Software has a substantial impact on quantitative perfusion MRI values. The lack of generally accepted implementations, code sharing and transparent testing reduces reproducibility, hindering the use of perfusion MRI in clinical trials. To address these issues, the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI) aimed to establish a community-led, centralized repository for sharing open-source code for processing contrast-based perfusion imaging, incorporating an open-source testing framework. METHODS: A repository was established on the OSIPI GitHub website. Python was chosen as the target software language. Calls for code contributions were made to OSIPI members, the ISMRM Perfusion Study Group, and publicly via OSIPI websites. An automated unit-testing framework was implemented to evaluate the output of code contributions, including visual representation of the results. RESULTS: The repository hosts 86 implementations of perfusion processing steps contributed by 12 individuals or teams. These cover all core aspects of DCE- and DSC-MRI processing, including multiple implementations of the same functionality. Tests were developed for 52 implementations, covering five analysis steps. For T1 mapping, signal-to-concentration conversion and population AIF functions, different implementations resulted in near-identical output values. For the five pharmacokinetic models tested (Tofts, extended Tofts-Kety, Patlak, two-compartment exchange, and two-compartment uptake), differences in output parameters were observed between contributions. CONCLUSIONS: The OSIPI DCE-DSC code repository represents a novel community-led model for code sharing and testing. The repository facilitates the re-use of existing code and the benchmarking of new code, promoting enhanced reproducibility in quantitative perfusion imaging.
Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Meios de Contraste/farmacocinética , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Perfusão , Imagem de Perfusão/métodosRESUMO
This manuscript describes the ISMRM OSIPI (Open Science Initiative for Perfusion Imaging) lexicon for dynamic contrast-enhanced and dynamic susceptibility-contrast MRI. The lexicon was developed by Taskforce 4.2 of OSIPI to provide standardized definitions of commonly used quantities, models, and analysis processes with the aim of reducing reporting variability. The taskforce was established in February 2020 and consists of medical physicists, engineers, clinicians, data and computer scientists, and DICOM (Digital Imaging and Communications in Medicine) standard experts. Members of the taskforce collaborated via a slack channel and quarterly virtual meetings. Members participated by defining lexicon items and reporting formats that were reviewed by at least two other members of the taskforce. Version 1.0.0 of the lexicon was subject to open review from the wider perfusion imaging community between January and March 2022, and endorsed by the Perfusion Study Group of the ISMRM in the summer of 2022. The initial scope of the lexicon was set by the taskforce and defined such that it contained a basic set of quantities, processes, and models to enable users to report an end-to-end analysis pipeline including kinetic model fitting. We also provide guidance on how to easily incorporate lexicon items and definitions into free-text descriptions (e.g., in manuscripts and other documentation) and introduce an XML-based pipeline encoding format to encode analyses using lexicon definitions in standardized and extensible machine-readable code. The lexicon is designed to be open-source and extendable, enabling ongoing expansion of its content. We hope that widespread adoption of lexicon terminology and reporting formats described herein will increase reproducibility within the field.
Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Perfusão , Imagem de PerfusãoRESUMO
OBJECTIVE: Breast milk exposure is associated with improved neurocognitive outcomes following preterm birth but the neural substrates linking breast milk with outcome are uncertain. We tested the hypothesis that high versus low breast milk exposure in preterm infants results in cortical morphology that more closely resembles that of term-born infants. METHODS: We studied 135 preterm (<32 weeks' gestation) and 77 term infants. Feeding data were collected from birth until hospital discharge and brain magnetic resonance imaging (MRI) was performed at term-equivalent age. Cortical indices (volume, thickness, surface area, gyrification index, sulcal depth, and curvature) and diffusion parameters (fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], axial diffusivity [AD], neurite density index [NDI], and orientation dispersion index [ODI]) were compared between preterm infants who received exclusive breast milk for <75% of inpatient days, preterm infants who received exclusive breast milk for ≥75% of inpatient days and term-born controls. To investigate a dose response effect, we performed linear regression using breast milk exposure quartile weighted by propensity scores. RESULTS: In preterm infants, high breast milk exposure was associated with reduced cortical gray matter volume (d = 0.47, 95% confidence interval [CI] = 0.14 to 0.94, p = 0.014), thickness (d = 0.42, 95% CI = 0.08 to 0.84, p = 0.039), and RD (d = 0.38, 95% CI = 0.002 to 0.77, p = 0.039), and increased FA (d = -0.38, 95% CI = -0.74 to -0.01, p = 0.037) after adjustment for age at MRI, which was similar to the cortical phenotype observed in term-born controls. Breast milk exposure quartile was associated with cortical volume (ß = -0.192, 95% CI = -0.342 to -0.042, p = 0.017), FA (ß = 0.223, 95% CI = 0.075 to 0.372, p = 0.007), and RD (ß = -0.225, 95% CI = -0.373 to -0.076, p = 0.007) following adjustment for age at birth, age at MRI, and weighted by propensity scores, suggesting a dose effect. INTERPRETATION: High breast milk exposure following preterm birth is associated with a cortical imaging phenotype that more closely resembles the brain morphology of term-born infants and effects appear to be dose-dependent. ANN NEUROL 2023;93:591-603.
Assuntos
Recém-Nascido Prematuro , Nascimento Prematuro , Recém-Nascido , Humanos , Feminino , Leite Humano , Encéfalo/patologia , Idade GestacionalRESUMO
BACKGROUND: Cerebrovascular reactivity (CVR) is inversely related to white matter hyperintensity severity, a marker of cerebral small vessel disease (SVD). Less is known about the relationship between CVR and other SVD imaging features or cognition. We aimed to investigate these cross-sectional relationships. METHODS: Between 2018 and 2021 in Edinburgh, we recruited patients presenting with lacunar or cortical ischemic stroke, whom we characterized for SVD features. We measured CVR in subcortical gray matter, normal-appearing white matter, and white matter hyperintensity using 3T magnetic resonance imaging. We assessed cognition using Montreal Cognitive Assessment. Statistical analyses included linear regression models with CVR as outcome, adjusted for age, sex, and vascular risk factors. We reported regression coefficients with 95% CIs. RESULTS: Of 208 patients, 182 had processable CVR data sets (median age, 68.2 years; 68% men). Although the strength of association depended on tissue type, lower CVR in normal-appearing tissues and white matter hyperintensity was associated with larger white matter hyperintensity volume (BNAWM=-0.0073 [95% CI, -0.0133 to -0.0014] %/mm Hg per 10-fold increase in percentage intracranial volume), more lacunes (BNAWM=-0.00129 [95% CI, -0.00215 to -0.00043] %/mm Hg per lacune), more microbleeds (BNAWM=-0.00083 [95% CI, -0.00130 to -0.00036] %/mm Hg per microbleed), higher deep atrophy score (BNAWM=-0.00218 [95% CI, -0.00417 to -0.00020] %/mm Hg per score point increase), higher perivascular space score (BNAWM=-0.0034 [95% CI, -0.0066 to -0.0002] %/mm Hg per score point increase in basal ganglia), and higher SVD score (BNAWM=-0.0048 [95% CI, -0.0075 to -0.0021] %/mm Hg per score point increase). Lower CVR in normal-appearing tissues was related to lower Montreal Cognitive Assessment without reaching convention statistical significance (BNAWM=0.00065 [95% CI, -0.00007 to 0.00137] %/mm Hg per score point increase). CONCLUSIONS: Lower CVR in patients with SVD was related to more severe SVD burden and worse cognition in this cross-sectional analysis. Longitudinal analysis will help determine whether lower CVR predicts worsening SVD severity or vice versa. REGISTRATION: URL: https://www.isrctn.com; Unique identifier: ISRCTN12113543.
Assuntos
Doenças de Pequenos Vasos Cerebrais , Substância Branca , Masculino , Humanos , Idoso , Feminino , Estudos Transversais , Doenças de Pequenos Vasos Cerebrais/complicações , Imageamento por Ressonância Magnética/métodos , Cognição , Substância Branca/patologiaRESUMO
The British and Irish Chapter of the International Society for Magnetic Resonance in Medicine (BIC-ISMRM) held a workshop entitled "Steps on the path to clinical translation" in Cardiff, UK, on 7th September 2022. The aim of the workshop was to promote discussion within the MR community about the problems and potential solutions for translating quantitative MR (qMR) imaging and spectroscopic biomarkers into clinical application and drug studies. Invited speakers presented the perspectives of radiologists, radiographers, clinical physicists, vendors, imaging Contract/Clinical Research Organizations (CROs), open science networks, metrologists, imaging networks, and those developing consensus methods. A round-table discussion was held in which workshop participants discussed a range of questions pertinent to clinical translation of qMR imaging and spectroscopic biomarkers. Each group summarized their findings via three main conclusions and three further questions. These questions were used as the basis of an online survey of the broader UK MR community.
Assuntos
Imageamento por Ressonância Magnética , Humanos , Espectroscopia de Ressonância Magnética , BiomarcadoresRESUMO
BACKGROUND: Preterm birth is closely associated with a phenotype that includes brain dysmaturation and neurocognitive impairment, commonly termed Encephalopathy of Prematurity (EoP), of which systemic inflammation is considered a key driver. DNA methylation (DNAm) signatures of inflammation from peripheral blood associate with poor brain imaging outcomes in adult cohorts. However, the robustness of DNAm inflammatory scores in infancy, their relation to comorbidities of preterm birth characterised by inflammation, neonatal neuroimaging metrics of EoP, and saliva cross-tissue applicability are unknown. METHODS: Using salivary DNAm from 258 neonates (n = 155 preterm, gestational age at birth 23.28 - 34.84 weeks, n = 103 term, gestational age at birth 37.00 - 42.14 weeks), we investigated the impact of a DNAm surrogate for C-reactive protein (DNAm CRP) on brain structure and other clinically defined inflammatory exposures. We assessed i) if DNAm CRP estimates varied between preterm infants at term equivalent age and term infants, ii) how DNAm CRP related to different types of inflammatory exposure (maternal, fetal and postnatal) and iii) whether elevated DNAm CRP associated with poorer measures of neonatal brain volume and white matter connectivity. RESULTS: Higher DNAm CRP was linked to preterm status (-0.0107 ± 0.0008, compared with -0.0118 ± 0.0006 among term infants; p < 0.001), as well as perinatal inflammatory diseases, including histologic chorioamnionitis, sepsis, bronchopulmonary dysplasia, and necrotising enterocolitis (OR range |2.00 | to |4.71|, p < 0.01). Preterm infants with higher DNAm CRP scores had lower brain volume in deep grey matter, white matter, and hippocampi and amygdalae (ß range |0.185| to |0.218|). No such associations were observed for term infants. Association magnitudes were largest for measures of white matter microstructure among preterms, where elevated epigenetic inflammation associated with poorer global measures of white matter integrity (ß range |0.206| to |0.371|), independent of other confounding exposures. CONCLUSIONS: Inflammatory-related DNAm captures the allostatic load of inflammatory burden in preterm infants. Such DNAm measures complement biological and clinical metrics when investigating the determinants of neurodevelopmental differences.
Assuntos
Encefalopatias , Nascimento Prematuro , Humanos , Recém-Nascido , Feminino , Recém-Nascido Prematuro , Nascimento Prematuro/genética , Saliva , Encéfalo/patologia , Inflamação/genética , Inflamação/patologiaRESUMO
OBJECTIVES: To quantify brain microstructural changes in recently diagnosed relapsing-remitting multiple sclerosis (RRMS) using longitudinal T1 measures, and determine their associations with clinical disability. METHODS: Seventy-nine people with recently diagnosed (< 6 months) RRMS were recruited from a single-centre cohort sub-study, and underwent baseline and 1-year brain MRI, including variable flip angle T1 mapping. Median T1 was measured in white matter lesions (WML), normal-appearing white matter (NAWM), cortical/deep grey matter (GM), thalami, basal ganglia and medial temporal regions. Prolonged T1 (≥ 2.00 s) and supramedian T1 (relative to cohort WML values) WML voxel counts were also measured. Longitudinal change was assessed with paired t-tests and compared with Bland-Altman limits of agreement from healthy control test-retest data. Regression analyses determined relationships with Expanded Disability Status Scale (EDSS) score and dichotomised EDSS outcomes (worsening or stable/improving). RESULTS: Sixty-two people with RRMS (mean age 37.2 ± 10.9 [standard deviation], 48 female) and 11 healthy controls (age 44 ± 11, 7 female) contributed data. Prolonged and supramedian T1 WML components increased longitudinally (176 and 463 voxels, respectively; p < .001), and were associated with EDSS score at baseline (p < .05) and follow-up (supramedian: p < .01; prolonged: p < .05). No cohort-wide median T1 changes were found; however, increasing T1 in WML, NAWM, cortical/deep GM, basal ganglia and thalami was positively associated with EDSS worsening (p < .05). CONCLUSION: T1 is sensitive to brain microstructure changes in early RRMS. Prolonged WML T1 components and subtle changes in NAWM and GM structures are associated with disability. CLINICAL RELEVANCE STATEMENT: MRI T1 brain mapping quantifies disability-associated white matter lesion heterogeneity and subtle microstructural damage in normal-appearing brain parenchyma in recently diagnosed RRMS, and shows promise for early objective disease characterisation and stratification. KEY POINTS: ⢠Quantitative T1 mapping detects brain microstructural damage and lesion heterogeneity in recently diagnosed relapsing-remitting multiple sclerosis. ⢠T1 increases in lesions and normal-appearing parenchyma, indicating microstructural damage, are associated with worsening disability. ⢠Brain T1 measures are objective markers of disability-relevant pathology in early multiple sclerosis.
RESUMO
Patients undergo interventions to achieve a 'normal' brain temperature; a parameter that remains undefined for humans. The profound sensitivity of neuronal function to temperature implies the brain should be isothermal, but observations from patients and non-human primates suggest significant spatiotemporal variation. We aimed to determine the clinical relevance of brain temperature in patients by establishing how much it varies in healthy adults. We retrospectively screened data for all patients recruited to the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) High Resolution Intensive Care Unit Sub-Study. Only patients with direct brain temperature measurements and without targeted temperature management were included. To interpret patient analyses, we prospectively recruited 40 healthy adults (20 males, 20 females, 20-40 years) for brain thermometry using magnetic resonance spectroscopy. Participants were scanned in the morning, afternoon, and late evening of a single day. In patients (n = 114), brain temperature ranged from 32.6 to 42.3°C and mean brain temperature (38.5 ± 0.8°C) exceeded body temperature (37.5 ± 0.5°C, P < 0.0001). Of 100 patients eligible for brain temperature rhythm analysis, 25 displayed a daily rhythm, and the brain temperature range decreased in older patients (P = 0.018). In healthy participants, brain temperature ranged from 36.1 to 40.9°C; mean brain temperature (38.5 ± 0.4°C) exceeded oral temperature (36.0 ± 0.5°C) and was 0.36°C higher in luteal females relative to follicular females and males (P = 0.0006 and P < 0.0001, respectively). Temperature increased with age, most notably in deep brain regions (0.6°C over 20 years, P = 0.0002), and varied spatially by 2.41 ± 0.46°C with highest temperatures in the thalamus. Brain temperature varied by time of day, especially in deep regions (0.86°C, P = 0.0001), and was lowest at night. From the healthy data we built HEATWAVE-a 4D map of human brain temperature. Testing the clinical relevance of HEATWAVE in patients, we found that lack of a daily brain temperature rhythm increased the odds of death in intensive care 21-fold (P = 0.016), whilst absolute temperature maxima or minima did not predict outcome. A warmer mean brain temperature was associated with survival (P = 0.035), however, and ageing by 10 years increased the odds of death 11-fold (P = 0.0002). Human brain temperature is higher and varies more than previously assumed-by age, sex, menstrual cycle, brain region, and time of day. This has major implications for temperature monitoring and management, with daily brain temperature rhythmicity emerging as one of the strongest single predictors of survival after brain injury. We conclude that daily rhythmic brain temperature variation-not absolute brain temperature-is one way in which human brain physiology may be distinguished from pathophysiology.
Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Hipotermia Induzida , Adulto , Idoso , Temperatura Corporal/fisiologia , Encéfalo/fisiologia , Lesões Encefálicas/complicações , Lesões Encefálicas Traumáticas/complicações , Feminino , Humanos , Masculino , Estudos Retrospectivos , TemperaturaRESUMO
BACKGROUND AND PURPOSE: Cerebral small vessel disease-a major cause of stroke and dementia-is associated with cerebrovascular dysfunction. We investigated whether short-term isosorbide mononitrate (ISMN) and cilostazol, alone or in combination, improved magnetic resonance imaging-measured cerebrovascular function in patients with lacunar ischemic stroke. METHODS: Participants were randomized to ISMN alone, cilostazol alone, both ISMN and cilostazol, or no medication. Participants underwent structural, cerebrovascular reactivity (to 6% carbon dioxide) and phase-contrast pulsatility magnetic resonance imaging at baseline and after 8 weeks of medication. RESULTS: Of 27 participants (mean age, 68±7.7; 44% female), 22 completed cerebrovascular reactivity and pulsatility imaging with complete datasets. White matter cerebrovascular reactivity increased in the ISMN (ß=0.021%/mm Hg [95% CI, 0.003-0.040]) and cilostazol (ß=0.035%/mm Hg [95% CI, 0.014-0.056]) monotherapy groups and in those taking any versus no medication (ß=0.021%/mm Hg [95% CI, 0.005-0.037]). CONCLUSIONS: While limited by small sample size, we demonstrate that measuring cerebrovascular function with magnetic resonance imaging is feasible in clinical trials and that ISMN and cilostazol may improve cerebrovascular function. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02481323. URL: www.isrctn.com; Unique identifier: ISRCTN12580546. URL: www.clinicaltrialsregister.eu; Unique identifier: EudraCT 2015-001953-33.
Assuntos
Doenças de Pequenos Vasos Cerebrais/tratamento farmacológico , Cilostazol/uso terapêutico , Hemodinâmica/efeitos dos fármacos , Dinitrato de Isossorbida/análogos & derivados , Lipoproteínas/uso terapêutico , Vasodilatadores/uso terapêutico , Idoso , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Cilostazol/farmacologia , Feminino , Hemodinâmica/fisiologia , Humanos , Dinitrato de Isossorbida/farmacologia , Dinitrato de Isossorbida/uso terapêutico , Lipoproteínas/farmacologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Vasodilatadores/farmacologiaRESUMO
Preterm birth is closely associated with diffuse white matter dysmaturation inferred from diffusion MRI and neurocognitive impairment in childhood. Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) are distinct dMRI modalities, yet metrics derived from these two methods share variance across tracts. This raises the hypothesis that dimensionality reduction approaches may provide efficient whole-brain estimates of white matter microstructure that capture (dys)maturational processes. To investigate the optimal model for accurate classification of generalised white matter dysmaturation in preterm infants we assessed variation in DTI and NODDI metrics across 16 major white matter tracts using principal component analysis and structural equation modelling, in 79 term and 141 preterm infants at term equivalent age. We used logistic regression models to evaluate performances of single-metric and multimodality general factor frameworks for efficient classification of preterm infants based on variation in white matter microstructure. Single-metric general factors from DTI and NODDI capture substantial shared variance (41.8-72.5%) across 16 white matter tracts, and two multimodality factors captured 93.9% of variance shared between DTI and NODDI metrics themselves. General factors associate with preterm birth and a single model that includes all seven DTI and NODDI metrics provides the most accurate prediction of microstructural variations associated with preterm birth. This suggests that despite global covariance of dMRI metrics in neonates, each metric represents information about specific (and additive) aspects of the underlying microstructure that differ in preterm compared to term subjects.
Assuntos
Nascimento Prematuro , Substância Branca , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Neuritos , Gravidez , Substância Branca/diagnóstico por imagemRESUMO
PURPOSE: Rim lesions, characterised by a paramagnetic rim on susceptibility-based MRI, have been suggested to reflect chronic inflammatory demyelination in multiple sclerosis (MS) patients. Here, we assess, through susceptibility-weighted imaging (SWI), the prevalence, longitudinal volume evolution and clinical associations of rim lesions in subjects with early relapsing-remitting MS (RRMS). METHODS: Subjects (n = 44) with recently diagnosed RRMS underwent 3 T MRI at baseline (M0) and 1 year (M12) as part of a multi-centre study. SWI was acquired at M12 using a 3D segmented gradient-echo echo-planar imaging sequence. Rim lesions identified on SWI were manually segmented on FLAIR images at both time points for volumetric analysis. RESULTS: Twelve subjects (27%) had at least one rim lesion at M12. A linear mixed-effects model, with 'subject' as a random factor, revealed mixed evidence for the difference in longitudinal volume change between rim lesions and non-rim lesions (p = 0.0350 and p = 0.0556 for subjects with and without rim lesions, respectively). All 25 rim lesions identified showed T1-weighted hypointense signal. Subjects with and without rim lesions did not differ significantly with respect to age, disease duration or clinical measures of disability (p > 0.05). CONCLUSION: We demonstrate that rim lesions are detectable in early-stage RRMS on 3 T MRI across multiple centres, although their relationship to lesion enlargement is equivocal in this small cohort. Identification of SWI rims was subjective. Agreed criteria for defining rim lesions and their further validation as a biomarker of chronic inflammation are required for translation of SWI into routine MS clinical practice.
Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagemRESUMO
The human adult structural connectome has a rich nodal hierarchy, with highly diverse connectivity patterns aligned to the diverse range of functional specializations in the brain. The emergence of this hierarchical complexity in human development is unknown. Here, we substantiate the hierarchical tiers and hierarchical complexity of brain networks in the newborn period, assess correspondences with hierarchical complexity in adulthood, and investigate the effect of preterm birth, a leading cause of atypical brain development and later neurocognitive impairment, on hierarchical complexity. We report that neonatal and adult structural connectomes are both composed of distinct hierarchical tiers and that hierarchical complexity is greater in term born neonates than in preterms. This is due to diversity of connectivity patterns of regions within the intermediate tiers, which consist of regions that underlie sensorimotor processing and its integration with cognitive information. For neonates and adults, the highest tier (hub regions) is ordered, rather than complex, with more homogeneous connectivity patterns in structural hubs. This suggests that the brain develops first a more rigid structure in hub regions allowing for the development of greater and more diverse functional specialization in lower level regions, while connectivity underpinning this diversity is dysmature in infants born preterm.
Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Recém-Nascido Prematuro/crescimento & desenvolvimento , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Adulto , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/tendências , Feminino , Humanos , Recém-Nascido , Estudos Longitudinais , MasculinoRESUMO
Dynamic contrast-enhanced MRI (DCE-MRI) is increasingly used to quantify and map the spatial distribution of blood-brain barrier (BBB) leakage in neurodegenerative disease, including cerebral small vessel disease and dementia. However, the subtle nature of leakage and resulting small signal changes make quantification challenging. While simplified one-dimensional simulations have probed the impact of noise, scanner drift, and model assumptions, the impact of spatio-temporal effects such as gross motion, k-space sampling and motion artefacts on parametric leakage maps has been overlooked. Moreover, evidence on which to base the design of imaging protocols is lacking due to practical difficulties and the lack of a reference method. To address these problems, we present an open-source computational model of the DCE-MRI acquisition process for generating four dimensional Digital Reference Objects (DROs), using a high-resolution brain atlas and incorporating realistic patient motion, extra-cerebral signals, noise and k-space sampling. Simulations using the DROs demonstrated a dominant influence of spatio-temporal effects on both the visual appearance of parameter maps and on measured tissue leakage rates. The computational model permits greater understanding of the sensitivity and limitations of subtle BBB leakage measurement and provides a non-invasive means of testing and optimising imaging protocols for future studies.
Assuntos
Barreira Hematoencefálica/diagnóstico por imagem , Simulação por Computador , Meios de Contraste , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Artefatos , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/fisiologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/metabolismo , Meios de Contraste/metabolismo , Humanos , Modelos Neurológicos , Movimento (Física) , Doenças Neurodegenerativas/metabolismoRESUMO
PURPOSE: Dynamic contrast-enhanced (DCE) -MRI with Patlak model analysis is increasingly used to quantify low-level blood-brain barrier (BBB) leakage in studies of pathophysiology. We aimed to investigate systematic errors due to physiological, experimental, and modeling factors influencing quantification of the permeability-surface area product PS and blood plasma volume vp , and to propose modifications to reduce the errors so that subtle differences in BBB permeability can be accurately measured. METHODS: Simulations were performed to predict the effects of potential sources of systematic error on conventional PS and vp quantification: restricted BBB water exchange, reduced cerebral blood flow, arterial input function (AIF) delay and B1+ error. The impact of targeted modifications to the acquisition and processing were evaluated, including: assumption of fast versus no BBB water exchange, bolus versus slow injection of contrast agent, exclusion of early data from model fitting and B1+ correction. The optimal protocol was applied in a cohort of recent mild ischaemic stroke patients. RESULTS: Simulation results demonstrated substantial systematic errors due to the factors investigated (absolute PS error ≤ 4.48 × 10-4 min-1 ). However, these were reduced (≤0.56 × 10-4 min-1 ) by applying modifications to the acquisition and processing pipeline. Processing modifications also had substantial effects on in-vivo normal-appearing white matter PS estimation (absolute change ≤ 0.45 × 10-4 min-1 ). CONCLUSION: Measuring subtle BBB leakage with DCE-MRI presents unique challenges and is affected by several confounds that should be considered when acquiring or interpreting such data. The evaluated modifications should improve accuracy in studies of neurodegenerative diseases involving subtle BBB breakdown.
Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Barreira Hematoencefálica/diagnóstico por imagem , Meios de Contraste , Humanos , Imageamento por Ressonância MagnéticaRESUMO
Background and Purpose- Perivascular spaces (PVS) around venules may help drain interstitial fluid from the brain. We examined relationships between suspected venules and PVS visible on brain magnetic resonance imaging. Methods- We developed a visual venular quantification method to examine the spatial relationship between venules and PVS. We recruited patients with lacunar stroke or minor nondisabling ischemic stroke and performed brain magnetic resonance imaging and retinal imaging. We quantified venules on gradient echo or susceptibility-weighted imaging and PVS on T2-weighted magnetic resonance imaging in the centrum semiovale and then determined overlap between venules and PVS. We assessed associations between venular count and patient demographic characteristics, vascular risk factors, small vessel disease features, retinal vessels, and venous sinus pulsatility. Results- Among 67 patients (69% men, 69.0±9.8 years), only 4.6% (range, 0%-18%) of venules overlapped with PVS. Total venular count increased with total centrum semiovale PVS count in 55 patients after accounting for venule-PVS overlap (ß=0.468 [95% CI, 0.187-0.750]) and transverse sinus pulsatility (ß=0.547 [95% CI, 0.309-0.786]) and adjusting for age, sex, and systolic blood pressure. Conclusions- Despite increases in both visible PVS and suspected venules, we found minimal spatial overlap between them in patients with sporadic small vessel disease, suggesting that most magnetic resonance imaging-visible centrum semiovale PVS are periarteriolar rather than perivenular.
Assuntos
Encéfalo/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Sistema Glinfático/diagnóstico por imagem , Vênulas/diagnóstico por imagem , Idoso , Isquemia Encefálica/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral Lacunar/diagnóstico por imagem , Seios TransversosRESUMO
BACKGROUND: Preterm birth is associated with dysconnectivity of structural brain networks, impaired cognition and psychiatric disease. Systemic inflammation contributes to cerebral dysconnectivity, but the immune mediators driving this association are poorly understood. We analysed information from placenta, umbilical cord and neonatal blood, and brain MRI to determine which immune mediators link perinatal systemic inflammation with dysconnectivity of structural brain networks. METHODS: Participants were 102 preterm infants (mean gestational age 29+1 weeks, range 23+3-32+0). Placental histopathology identified reaction patterns indicative of histologic chorioamnionitis (HCA), and a customized immunoassay of 24 inflammation-associated proteins selected to reflect the neonatal innate and adaptive immune response was performed from umbilical cord (n = 55) and postnatal day 5 blood samples (n = 71). Brain MRI scans were acquired at term-equivalent age (41+0 weeks [range 38+0-44+4 weeks]) and alterations in white matter connectivity were inferred from mean diffusivity and neurite density index across the white matter skeleton. RESULTS: HCA was associated with elevated concentrations of C5a, C9, CRP, IL-1ß, IL-6, IL-8 and MCP-1 in cord blood, and IL-8 concentration predicted HCA with an area under the receiver operator curve of 0.917 (95% CI 0.841 - 0.993, p < 0.001). Fourteen analytes explained 66% of the variance in the postnatal profile (BDNF, C3, C5a, C9, CRP, IL-1ß, IL-6, IL-8, IL-18, MCP-1, MIP-1ß, MMP-9, RANTES and TNF-α). Of these, IL-8 was associated with altered neurite density index across the white matter skeleton after adjustment for gestational age at birth and at scan (ß = 0.221, p = 0.037). CONCLUSIONS: These findings suggest that IL-8 dysregulation has a role in linking perinatal systemic inflammation and atypical white matter development in preterm infants.
Assuntos
Interleucina-8 , Nascimento Prematuro , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Placenta , GravidezRESUMO
Cerebral small vessel disease (cSVD) comprises pathological processes of the small vessels in the brain that may manifest clinically as stroke, cognitive impairment, dementia, or gait disturbance. It is generally accepted that endothelial dysfunction, including blood-brain barrier (BBB) failure, is pivotal in the pathophysiology. Recent years have seen increasing use of imaging, primarily dynamic contrast-enhanced magnetic resonance imaging, to assess BBB leakage, but there is considerable variability in the approaches and findings reported in the literature. Although dynamic contrast-enhanced magnetic resonance imaging is well established, challenges emerge in cSVD because of the subtle nature of BBB impairment. The purpose of this work, authored by members of the HARNESS Initiative, is to provide an in-depth review and position statement on magnetic resonance imaging measurement of subtle BBB leakage in clinical research studies, with aspects requiring further research identified. We further aim to provide information and consensus recommendations for new investigators wishing to study BBB failure in cSVD and dementia.
Assuntos
Barreira Hematoencefálica/patologia , Doenças de Pequenos Vasos Cerebrais/patologia , Imageamento por Ressonância Magnética , Barreira Hematoencefálica/fisiopatologia , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Demência/etiologia , Demência/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologiaRESUMO
A protocol for evaluating ultrasmall superparamagnetic particles of iron oxide (USPIO) uptake and elimination in cerebral small vessel disease patients was developed and piloted. B1-insensitive R1 measurement was evaluated in vitro. Twelve participants with history of minor stroke were scanned at 3-T MRI including structural imaging, and R1 and R2* mapping. Participants were scanned (i) before and (ii) after USPIO (ferumoxytol) infusion, and again at (iii) 24â»30 h and (iv) one month. Absolute and blood-normalised changes in R1 and R2* were measured in white matter (WM), deep grey matter (GM), white matter hyperintensity (WMH) and stroke lesion regions. R1 measurements were accurate across a wide range of values. R1 (p < 0.05) and R2* (p < 0.01) mapping detected increases in relaxation rate in all tissues immediately post-USPIO and at 24â»30 h. R2* returned to baseline at one month. Blood-normalised R1 and R2* changes post-infusion and at 24â»30 h were similar, and were greater in GM versus WM (p < 0.001). Narrower distributions were seen with R2* than for R1 mapping. R1 and R2* changes were correlated at 24â»30 h (p < 0.01). MRI relaxometry permits quantitative evaluation of USPIO uptake; R2* appears to be more sensitive to USPIO than R1. Our data are explained by intravascular uptake alone, yielding estimates of cerebral blood volume, and did not support parenchymal uptake. Ferumoxytol appears to be eliminated at 1 month. The approach should be valuable in future studies to quantify both blood-pool USPIO and parenchymal uptake associated with inflammatory cells or blood-brain barrier leak.
Assuntos
Doenças de Pequenos Vasos Cerebrais/metabolismo , Doenças de Pequenos Vasos Cerebrais/patologia , Compostos Férricos/metabolismo , Óxido Ferroso-Férrico/metabolismo , Idoso , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Estudos de Avaliação como Assunto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/administração & dosagem , MasculinoRESUMO
Growing evidence suggests that increased intracranial pulsatility is associated with cerebral small vessel disease (SVD). We systematically reviewed papers that assessed intracranial pulsatility in subjects with SVD. We included 27 cross-sectional studies (n=3356): 20 used Doppler ultrasound and 7 used phase-contrast MRI. Most studies measured pulsatility in the internal carotid or middle cerebral arteries (ICA, MCA), whereas few assessed veins or cerebrospinal fluid (CSF). Methods to reduce bias and risk factor adjustment were poorly reported. Substantial variation between studies in assessment of SVD and of pulsatility indices precluded a formal meta-analysis. Eight studies compared pulsatility by SVD severity (n=26-159, median = 74.5): arterial pulsatility index was generally higher in more severe SVD (e.g. MCA: standardized mean difference = 3.24, 95% confidence interval [2.40, 4.07]), although most did not match for age. Seventeen studies (n=9-700; median = 110) performed regression or correlation analysis, of which most showed that increased pulsatility was associated with SVD after adjustment for age. In conclusion, most studies support a cross-sectional association between higher pulsatility in large intracranial arteries and SVD. Future studies should minimize bias, adjust for potential confounders, include pulsatility in veins and CSF, and examine longitudinal relationship between pulsatility and SVD. Agreement on reliable measures of intracranial pulsatility would be helpful.