Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 105(12): 4939-44, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18344319

RESUMO

Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of MSX, an inhibitor of glutamine synthetase, resulting in a block of Glu/Gln synthesis. Genes that responded to organic N were identified as those whose response to ammonium nitrate treatment was blocked in the presence of MSX. We showed that some genes previously identified to be regulated by nitrate are under the control of an organic N-metabolite. Using an integrated network model of molecular interactions, we uncovered a subnetwork regulated by organic N that included CCA1 and target genes involved in N-assimilation. We validated some of the predicted interactions and showed that regulation of the master clock control gene CCA1 by Glu or a Glu-derived metabolite in turn regulates the expression of key N-assimilatory genes. Phase response curve analysis shows that distinct N-metabolites can advance or delay the CCA1 phase. Regulation of CCA1 by organic N signals may represent a novel input mechanism for N-nutrients to affect plant circadian clock function.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Nitrogênio/farmacologia , Fatores de Transcrição/genética , Ritmo Circadiano/efeitos dos fármacos , Genoma de Planta , Ácido Glutâmico/farmacologia , Glutamina/farmacologia , Modelos Genéticos , Nitratos/farmacologia , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Plântula/efeitos dos fármacos , Plântula/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
2.
Curr Biol ; 31(23): 5377-5384.e5, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34666004

RESUMO

Transcription initiation has long been considered a primary regulatory step in gene expression. Recent work, however, shows that downstream events, such as transcription elongation, can also play important roles.1-3 A well-characterized example from animals is promoter-proximal pausing, where transcriptionally engaged Pol II accumulates 30-50 bp downstream of the transcription start site (TSS) and is thought to enable rapid gene activation.2 Plants do not make widespread use of promoter-proximal pausing; however, in a phenomenon known as 3' pausing, a significant increase in Pol II is observed near the transcript end site (TES) of many genes.4-6 Previous work has shown that 3' pausing is promoted by the BORDER (BDR) family of negative transcription elongation factors. Here we show that BDR proteins play key roles in gene repression. Consistent with BDR proteins acting to slow or pause elongating Pol II, BDR-repressed genes are characterized by high levels of Pol II occupancy, yet low levels of mRNA. The BDR proteins physically interact with FPA,7 one of approximately two dozen genes collectively referred to as the autonomous floral-promotion pathway,8 which are necessary for the repression of the flowering time gene FLOWERING LOCUS C (FLC).9-11 In early-flowering strains, FLC expression is repressed by repressive histone modifications, such as histone H3 lysine 27 trimethylation (H3K27me3), thereby allowing the plants to flower early. These results suggest that the repression of transcription elongation by BDR proteins may allow for the temporary pausing of transcription or facilitate the long-term repression of genes by repressive histone modifications.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Histonas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica
3.
Genome Biol ; 16: 79, 2015 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-25928034

RESUMO

BACKGROUND: Histone methylation modifies the epigenetic state of target genes to regulate gene expression in the context of developmental and environmental changes. Previously, we used a positive genetic screen to identify an Arabidopsis mutant, cli186, which was impaired in carbon and light signaling. Here, we report a deletion of the Arabidopsis histone methyltransferase SDG8 in this mutant (renamed sdg8-5), which provides a unique opportunity to study the global function of a specific histone methyltransferase within a multicellular organism. RESULTS: To assess the specific role of SDG8, we examine how the global histone methylation patterns and transcriptome were altered in the sdg8-5 deletion mutant compared to wild type, within the context of transient light and carbon treatments. Our results reveal that the sdg8 deletion is associated with a significant reduction of H3K36me3, preferentially towards the 3' end of the gene body, accompanied by a reduction in gene expression. We uncover 728 direct targets of SDG8 that have altered methylation in the sdg8-5 mutant and are also bound by SDG8. As a group, this set of SDG8 targets is enriched in specific biological processes including defense, photosynthesis, nutrient metabolism and energy metabolism. Importantly, 64% of these SDG8 targets are responsive to light and/or carbon signals. CONCLUSIONS: The histone methyltransferase SDG8 functions to regulate the H3K36 methylation of histones associated with gene bodies in Arabidopsis. The H3K36me3 mark in turn is associated with high-level expression of a specific set of light and/or carbon responsive genes involved in photosynthesis, metabolism and energy production.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Carbono/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Histona-Lisina N-Metiltransferase/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Metilação de DNA , Deleção de Genes , Perfilação da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Família Multigênica , Reprodutibilidade dos Testes
4.
BMC Syst Biol ; 2: 31, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18387196

RESUMO

BACKGROUND: Light and carbon are two important interacting signals affecting plant growth and development. The mechanism(s) and/or genes involved in sensing and/or mediating the signaling pathways involving these interactions are unknown. This study integrates genetic, genomic and systems approaches to identify a genetically perturbed gene network that is regulated by the interaction of carbon and light signaling in Arabidopsis. RESULTS: Carbon and light insensitive (cli) mutants were isolated. Microarray data from cli186 is analyzed to identify the genes, biological processes and gene networks affected by the integration of light and carbon pathways. Analysis of this data reveals 966 genes regulated by light and/or carbon signaling in wild-type. In cli186, 216 of these light/carbon regulated genes are misregulated in response to light and/or carbon treatments where 78% are misregulated in response to light and carbon interactions. Analysis of the gene lists show that genes in the biological processes "energy" and "metabolism" are over-represented among the 966 genes regulated by carbon and/or light in wild-type, and the 216 misregulated genes in cli186. To understand connections among carbon and/or light regulated genes in wild-type and the misregulated genes in cli186, the microarray data is interpreted in the context of metabolic and regulatory networks. The network created from the 966 light/carbon regulated genes in wild-type, reveals that cli186 is affected in the light and/or carbon regulation of a network of 60 connected genes, including six transcription factors. One transcription factor, HAT22 appears to be a regulatory "hub" in the cli186 network as it shows regulatory connections linking a metabolic network of genes involved in "amino acid metabolism", "C-compound/carbohydrate metabolism" and "glycolysis/gluconeogenesis". CONCLUSION: The global misregulation of gene networks controlled by light and carbon signaling in cli186 indicates that it represents one of the first Arabidopsis mutants isolated that is specifically disrupted in the integration of both carbon and light signals to control the regulation of metabolic, developmental and regulatory genes. The network analysis of misregulated genes suggests that CLI186 acts to integrate light and carbon signaling interactions and is a master regulator connecting the regulation of a host of downstream metabolic and regulatory processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carbono/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Arabidopsis/efeitos da radiação , Simulação por Computador , Genômica/métodos , Proteoma/metabolismo , Transdução de Sinais/efeitos da radiação , Integração de Sistemas , Teoria de Sistemas
5.
Genome Biol ; 5(2): R10, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14759260

RESUMO

BACKGROUND: Light and carbon are two essential signals influencing plant growth and development. Little is known about how carbon and light signaling pathways intersect or influence one another to affect gene expression. RESULTS: Microarrays are used to investigate carbon and light signaling interactions at a genome-wide level in Arabidopsis thaliana. A classification system, 'InterAct Class', is used to classify genes on the basis of their expression profiles. InterAct classes and the genes within them are placed into theoretical models describing interactions between carbon and light signaling. Within InterAct classes there are genes regulated by carbon (201 genes), light (77 genes) or through carbon and light interactions (1,247 genes). We determined whether genes involved in specific biological processes are over-represented in the population of genes regulated by carbon and/or light signaling. Of 29 primary functional categories identified by the Munich Information Center for Protein Sequences, five show over-representation of genes regulated by carbon and/or light. Metabolism has the highest representation of genes regulated by carbon and light interactions and includes the secondary functional categories of carbon-containing-compound/carbohydrate metabolism, amino-acid metabolism, lipid metabolism, fatty-acid metabolism and isoprenoid metabolism. Genes that share a similar InterAct class expression profile and are involved in the same biological process are used to identify putative cis elements possibly involved in responses to both carbon and light signals. CONCLUSIONS: The work presented here represents a method to organize and classify microarray datasets, enabling one to investigate signaling interactions and to identify putative cis elements in silico through the analysis of genes that share a similar expression profile and biological function.


Assuntos
Arabidopsis/genética , Carbono/farmacologia , Regulação da Expressão Gênica de Plantas , Luz , Transdução de Sinais , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Metabolismo dos Carboidratos , Perfilação da Expressão Gênica , Genes de Plantas , Genoma de Planta , Análise de Sequência com Séries de Oligonucleotídeos , Sequências Reguladoras de Ácido Nucleico , Elementos de Resposta
6.
Plant Physiol ; 132(2): 440-52, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12805577

RESUMO

Here, we report the systematic exploration and modeling of interactions between light and sugar signaling. The data set analyzed explores the interactions of sugar (sucrose) with distinct light qualities (white, blue, red, and far-red) used at different fluence rates (low or high) in etiolated seedlings and mature green plants. Boolean logic was used to model the effect of these carbon/light interactions on three target genes involved in nitrogen assimilation: asparagine synthetase (ASN1 and ASN2) and glutamine synthetase (GLN2). This analysis enabled us to assess the effects of carbon on light-induced genes (GLN2/ASN2) versus light-repressed genes (ASN1) in this pathway. New interactions between carbon and blue-light signaling were discovered, and further connections between red/far-red light and carbon were modeled. Overall, light was able to override carbon as a major regulator of ASN1 and GLN2 in etiolated seedlings. By contrast, carbon overrides light as the major regulator of GLN2 and ASN2 in light-grown plants. Specific examples include the following: Carbon attenuated the blue-light induction of GLN2 in etiolated seedlings and also attenuated the white-, blue-, and red-light induction of GLN2 and ASN2 in light-grown plants. By contrast, carbon potentiated far-red-light induction of GLN2 and ASN2 in light-grown plants. Depending on the fluence rate of far-red light, carbon either attenuated or potentiated light repression of ASN1 in light-grown plants. These studies indicate the interaction of carbon with blue, red, and far-red-light signaling and set the stage for further investigation into modeling this complex web of interacting pathways using systems biology approaches.


Assuntos
Arabidopsis/fisiologia , Carbono/metabolismo , Luz , Modelos Biológicos , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA