Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 295(43): 14763-14779, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32843479

RESUMO

The human pathogen Chlamydia trachomatis targets epithelial cells lining the genital mucosa. We observed that infection of various cell types, including fibroblasts and epithelial cells resulted in the formation of unusually stable and mature focal adhesions that resisted disassembly induced by the myosin II inhibitor, blebbistatin. Superresolution microscopy revealed in infected cells the vertical displacement of paxillin and focal adhesion kinase from the signaling layer of focal adhesions, whereas vinculin remained in its normal position within the force transduction layer. The candidate type III effector TarP, which localized to focal adhesions during infection and when expressed ectopically, was sufficient to mimic both the reorganization and blebbistatin-resistant phenotypes. These effects of TarP, including its localization to focal adhesions, required a post-invasion interaction with the host protein vinculin through a specific domain at the C terminus of TarP. This interaction is repurposed from an actin-recruiting and -remodeling complex to one that mediates nanoarchitectural and dynamic changes of focal adhesions. The consequence of Chlamydia-stabilized focal adhesions was restricted cell motility and enhanced attachment to the extracellular matrix. Thus, via a novel mechanism, Chlamydia inserts TarP within focal adhesions to alter their organization and stability.


Assuntos
Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/fisiologia , Adesões Focais/metabolismo , Animais , Células COS , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlorocebus aethiops , Adesões Focais/microbiologia , Adesões Focais/patologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Mapas de Interação de Proteínas , Vinculina/análise , Vinculina/metabolismo
2.
J Biol Chem ; 289(44): 30426-30442, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25193659

RESUMO

Host cell signal transduction pathways are often targets of bacterial pathogens, especially during the process of invasion when robust actin remodeling is required. We demonstrate that the host cell focal adhesion kinase (FAK) was necessary for the invasion by the obligate intracellular pathogen Chlamydia caviae. Bacterial adhesion triggered the transient recruitment of FAK to the plasma membrane to mediate a Cdc42- and Arp2/3-dependent actin assembly. FAK recruitment was via binding to a domain within the virulence factor TarP that mimicked the LD2 motif of the FAK binding partner paxillin. Importantly, bacterial two-hybrid and quantitative imaging assays revealed a similar level of interaction between paxillin-LD2 and TarP-LD. The conserved leucine residues within the L(D/E)XLLXXL motif were essential to the recruitment of FAK, Cdc42, p34(Arc), and actin to the plasma membrane. In the absence of FAK, TarP-LD-mediated F-actin assembly was reduced, highlighting the functional relevance of this interaction. Together, the data indicate that a prokaryotic version of the paxillin LD2 domain targets the FAK signaling pathway, with TarP representing the first example of an LD-containing Type III virulence effector.


Assuntos
Proteínas de Bactérias/fisiologia , Chlamydia trachomatis/fisiologia , Fatores de Virulência/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Aderência Bacteriana , Proteínas de Bactérias/química , Células COS , Membrana Celular/enzimologia , Membrana Celular/microbiologia , Chlorocebus aethiops , Sequência Conservada , Quinase 1 de Adesão Focal/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Mimetismo Molecular , Dados de Sequência Molecular , Paxilina/química , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Fatores de Virulência/química , Proteína cdc42 de Ligação ao GTP/metabolismo
3.
Front Cell Dev Biol ; 10: 1023340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684426

RESUMO

Efficient and effective methods for converting human induced pluripotent stem cells into differentiated derivatives are critical for performing robust, large-scale studies of development and disease modelling, and for providing a source of cells for regenerative medicine. Here, we describe a 14-day neural differentiation protocol which allows for the scalable, simultaneous differentiation of multiple iPSC lines into cortical neural stem cells We currently employ this protocol to differentiate and compare sets of engineered iPSC lines carrying loss of function alleles in developmental disorder associated genes, alongside isogenic wildtype controls. Using RNA sequencing (RNA-Seq), we can examine the changes in gene expression brought about by each disease gene knockout, to determine its impact on neural development and explore mechanisms of disease. The 10-day Neural Induction period uses the well established dual-SMAD inhibition approach combined with Wnt/ß-Catenin inhibition to selectively induce formation of cortical NSCs. This is followed by a 4-day Neural Maintenance period facilitating NSC expansion and rosette formation, and NSC cryopreservation. We also describe methods for thawing and passaging the cryopreserved NSCs, which are useful in confirming their viability for further culture. Routine implementation of immunocytochemistry Quality Control confirms the presence of PAX6-positive and/or FOXG1-positive NSCs and the absence of OCT4-positive iPSCs after differentiation. RNA-Seq, flow cytometry, immunocytochemistry (ICC) and RT-qPCR provide additional confirmation of robust presence of NSC markers in the differentiated cells. The broader utility and application of our protocol is demonstrated by the successful differentiation of wildtype iPSC lines from five additional independent donors. This paper thereby describes an efficient method for the production of large numbers of high purity cortical NSCs, which are widely applicable for downstream research into developmental mechanisms, further differentiation into postmitotic cortical neurons, or other applications such as large-scale drug screening experiments.

4.
Artigo em Inglês | MEDLINE | ID: mdl-26649283

RESUMO

The mammalian protein vinculin is often a target of bacterial pathogens to subvert locally host cell actin dynamics. In Chlamydia infection, vinculin has been implicated in RNA interference screens, but the molecular basis for vinculin requirement has not been characterized. In this report, we show that vinculin was involved in the actin recruitment and F-actin assembly at the plasma membrane to facilitate invasion. Vinculin was recruited to the plasma membrane via its interaction with a specific tripartite motif within TarP that resembles the vinculin-binding domain (VBD) found in the Shigella invasion factor IpaA. The TarP-mediated plasma membrane recruitment of vinculin resulted in the localized recruitment of actin. In vitro pulldown assays for protein-protein interaction and imaging-based evaluation of recruitment to the plasma membrane demonstrated the essential role of the vinculin-binding site 1 (VBS1), and the dispensability of VBS2 and VBS3. As further support for the functionality of VBD-vinculin interaction, VBD-mediated actin recruitment required vinculin. Interestingly, while both vinculin and the focal adhesion kinase (FAK) colocalized at the sites of adhesion, the recruitment of one was independent of the other; and the actin recruitment function of the VBD/vinculin signaling axis was independent of the LD/FAK pathway.


Assuntos
Actinas/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Chlamydia/fisiologia , Multimerização Proteica , Vinculina/metabolismo , Fatores de Virulência/metabolismo , Linhagem Celular , Endocitose , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA