Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Heliyon ; 10(1): e23746, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192810

RESUMO

Aromatic l-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive neurometabolic disorder caused by biallelic pathogenic variants in the DDC gene; approximately 140 patients have been described worldwide. AADC deficiency is characterised by a combined deficiency of dopamine, serotonin, adrenaline and noradrenaline causing a highly variable phenotype with developmental delay, early-onset hypotonia, movement disorders and autonomic symptoms. We expand the phenotype of this neurometabolic disorder by reporting on a paediatric patient with a mild phenotype with atypical exercise-induced dystonic crises, a feature that has not been described in AADC deficiency up till now. Additionally, we also present a second patient with typical characteristics and a severe phenotype. The diagnosis in both patients was confirmed by the presence of a homozygous pathogenic variant in the DDC gene and reduced AADC enzyme plasma activity. The use of whole exome sequencing-based strategies has played a crucial role in diagnosing these two patients.

3.
Pediatr Neurol ; 161: 1-8, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39213953

RESUMO

BACKGROUND: Cerebral palsy (CP) is the most frequent cause of motor impairment in children. Although perinatal asphyxia was long considered to be the leading cause of CP, recent studies demonstrate its causation in only around one in 10 individuals with CP. Instead, genetic causes are increasingly demonstrated. We systematically performed clinical phenotyping and genetic investigations in a monocentric CP cohort, aiming to gain insight into the contribution of genetic variants in CP and its different subtypes. METHODS: Chromosomal microarray and/or trio exome sequencing were systematically performed in 337 individuals with CP between September 2017 and August 2022. Deep phenotyping was performed through clinical multidisciplinary evaluation and review of medical files. RESULTS: Genetic analyses resulted in an overall diagnostic yield of 38.3% (129 of 337). In cases with one or more comorbidities (intellectual disability, epilepsy, autism spectrum disorder), the yield increased to almost 50%. Functional enrichment analysis showed over-representation of the following pathways: genetic imprinting, DNA modification, liposaccharide metabolic process, neuron projection guidance, and axon development. CONCLUSIONS: Genetic analyses in our CP cohort, the largest monocentric study to date, demonstrated a diagnostic yield of 38.3%, highlighting the importance of genetic testing in CP. The diagnosis of a genetic disorder is essential for prognosis and clinical follow-up, as well as for family counseling. Pathway analysis points to dysregulation of general developmental and metabolic processes as well as neuronal development and function. Unraveling the role of these pathways in CP pathogenesis is instrumental for the identification of CP candidate genes as well as potential therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA