Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34772808

RESUMO

Invariant natural killer T (iNKT) cells play important roles in regulating immune responses. Based on cytokine profiling and key transcriptional factors, iNKT cells are classified into iNKT1, iNKT2, and iNKT17 subsets. However, whether the development and functions of these subsets are controlled by distinct mechanisms remains unclear. Here, we show that forkhead box protein O1 (Foxo1) promotes differentiation of iNKT1 and iNKT2 cells but not iNKT17 cells because of its distinct contributions to IL7R expression in these subsets. Nuclear Foxo1 is essential for Il7r expression in iNKT1 and iNKT2 cells at early stages of differentiation but is dispensable in iNKT17 cells. RORγt, instead of Foxo1, promotes IL7R expression in iNKT17 cells. Additionally, Foxo1 is required for the effector function of iNKT1 and iNKT2 cells but not iNKT17 cells. Cytoplasmic Foxo1 promotes activation of mTORC1 in iNKT1 and iNKT2 cells through inhibiting TSC1-TSC2 interaction, whereas it is dispensable for mTORC1 activation in iNKT17 cells. iNKT17 cells display distinct metabolic gene expression patterns from iNKT1 and iNKT2 cells that match their different functional requirements on Foxo1. Together, our results demonstrate that iNKT cell subsets differ in their developmental and functional requirements on Foxo1.


Assuntos
Proteína Forkhead Box O1/metabolismo , Células T Matadoras Naturais/metabolismo , Animais , Diferenciação Celular/fisiologia , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(28): 14181-14190, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31068469

RESUMO

Extracellular matrix (ECM) deposition is a hallmark of many diseases, including cancer and fibroses. To exploit the ECM as an imaging and therapeutic target, we developed alpaca-derived libraries of "nanobodies" against disease-associated ECM proteins. We describe here one such nanobody, NJB2, specific for an alternatively spliced domain of fibronectin expressed in disease ECM and neovasculature. We showed by noninvasive in vivo immuno-PET/CT imaging that NJB2 detects primary tumors and metastatic sites with excellent specificity in multiple models of breast cancer, including human and mouse triple-negative breast cancer, and in melanoma. We also imaged mice with pancreatic ductal adenocarcinoma (PDAC) in which NJB2 was able to detect not only PDAC tumors but also early pancreatic lesions called pancreatic intraepithelial neoplasias, which are challenging to detect by any current imaging modalities, with excellent clarity and signal-to-noise ratios that outperformed conventional 2-fluorodeoxyglucose PET/CT imaging. NJB2 also detected pulmonary fibrosis in a bleomycin-induced fibrosis model. We propose NJB2 and similar anti-ECM nanobodies as powerful tools for noninvasive detection of tumors, metastatic lesions, and fibroses. Furthermore, the selective recognition of disease tissues makes NJB2 a promising candidate for nanobody-based therapeutic applications.


Assuntos
Carcinogênese/genética , Carcinoma Ductal Pancreático/diagnóstico por imagem , Matriz Extracelular/efeitos dos fármacos , Neoplasias Pancreáticas/diagnóstico por imagem , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Fibrose/patologia , Humanos , Masculino , Camundongos , Neoplasias Pancreáticas/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/farmacologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Neoplasias Pancreáticas
3.
Proc Natl Acad Sci U S A ; 116(39): 19609-19618, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31484774

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has prominent extracellular matrix (ECM) that compromises treatments yet cannot be nonselectively disrupted without adverse consequences. ECM of PDAC, despite the recognition of its importance, has not been comprehensively studied in patients. In this study, we used quantitative mass spectrometry (MS)-based proteomics to characterize ECM proteins in normal pancreas and pancreatic intraepithelial neoplasia (PanIN)- and PDAC-bearing pancreas from both human patients and mouse genetic models, as well as chronic pancreatitis patient samples. We describe detailed changes in both abundance and complexity of matrisome proteins in the course of PDAC progression. We reveal an early up-regulated group of matrisome proteins in PanIN, which are further up-regulated in PDAC, and we uncover notable similarities in matrix changes between pancreatitis and PDAC. We further assigned cellular origins to matrisome proteins by performing MS on multiple lines of human-to-mouse xenograft tumors. We found that, although stromal cells produce over 90% of the ECM mass, elevated levels of ECM proteins derived from the tumor cells, but not those produced exclusively by stromal cells, tend to correlate with poor patient survival. Furthermore, distinct pathways were implicated in regulating expression of matrisome proteins in cancer cells and stromal cells. We suggest that, rather than global suppression of ECM production, more precise ECM manipulations, such as targeting tumor-promoting ECM proteins and their regulators in cancer cells, could be more effective therapeutically.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Matriz Extracelular/metabolismo , Células Estromais/metabolismo , Adulto , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite Crônica/patologia , Proteômica/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
4.
Dev Biol ; 429(1): 335-342, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28614700

RESUMO

Proper development of a multicellular organism relies on well-coordinated regulation of cell fate specification, cell proliferation and cell differentiation. The C. elegans postembryonic mesoderm provides a useful system for uncovering factors involved in these processes and for further dissecting their regulatory relationships. The single Spalt-like zinc finger containing protein SEM-4/SALL is known to be involved in specifying the proliferative sex myoblast (SM) fate. We have found that SEM-4/SALL is sufficient to promote the SM fate and that it does so in a cell autonomous manner. We further showed that SEM-4/SALL acts through the SoxC transcription factor SEM-2 to promote the SM fate. SEM-2 is known to promote the SM fate by inhibiting the expression of two BWM-specifying transcription factors. In light of recent findings in mammals showing that Sall4, one of the mammalian homologs of SEM-4, contributes to pluripotency regulation by inhibiting differentiation, our work suggests that the function of SEM-4/SALL proteins in regulating pluripotency versus differentiation appears to be evolutionarily conserved.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Linhagem da Célula , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero/citologia , Mesoderma/citologia , Fatores de Transcrição SOXC/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Mutação/genética , Sequências Reguladoras de Ácido Nucleico/genética
5.
PLoS Genet ; 11(5): e1005221, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25978409

RESUMO

Bone morphogenetic proteins (BMPs) belong to the transforming growth factor ß (TGFß) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like "Sma/Mab" signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Glicoesfingolipídeos/farmacologia , Transdução de Sinais , Tetraspaninas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Morfogenéticas Ósseas/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Genes Reporter , Marcadores Genéticos , Dados de Sequência Molecular , Mutação , Fenótipo , Sensibilidade e Especificidade , Análise de Sequência de DNA , Tetraspaninas/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
6.
Development ; 140(19): 4070-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24004951

RESUMO

The deleted in colorectal cancer (DCC) homolog neogenin functions in both netrin- and repulsive guidance molecule (RGM)-mediated axon guidance and in bone morphogenetic protein (BMP) signaling. How neogenin functions in mediating BMP signaling is not well understood. We show that the sole C. elegans DCC/neogenin homolog UNC-40 positively modulates a BMP-like pathway by functioning in the signal-receiving cells at the ligand/receptor level. This function of UNC-40 is independent of its role in netrin-mediated axon guidance, but requires its association with the RGM protein DRAG-1. We have identified the key residues in the extracellular domain of UNC-40 that are crucial for UNC-40-DRAG-1 interaction and UNC-40 function. Surprisingly, the extracellular domain of UNC-40 is sufficient to promote BMP signaling, in clear contrast to the requirement of its intracellular domain in mediating axon guidance. Mouse neogenin lacking the intracellular domain is also capable of mediating BMP signaling. These findings reveal an unexpected mode of action for neogenin regulation of BMP signaling.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Membrana/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adesão Celular/genética , Linhagem Celular , Humanos , Imunoprecipitação , Proteínas de Membrana/genética , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
Development ; 138(6): 1033-43, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21307099

RESUMO

The proper development of multicellular organisms requires precise regulation and coordination of cell fate specification, cell proliferation and differentiation. Abnormal regulation and coordination of these processes could lead to disease, including cancer. We have examined the function of the sole C. elegans SoxC protein, SEM-2, in the M lineage, which produces the postembryonic mesoderm. We found that SEM-2/SoxC is both necessary and sufficient to promote a proliferating blast cell fate, the sex myoblast fate, over a differentiated striated bodywall muscle fate. A number of factors control the specific expression of sem-2 in the sex myoblast precursors and their descendants. This includes direct control of sem-2 expression by a Hox-PBC complex. The crucial nature of the HOX/PBC factors in directly enhancing expression of this proliferative factor in the C. elegans M lineage suggests a possible more general link between Hox-PBC factors and SoxC proteins in regulating cell proliferation.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Diferenciação Celular , Proliferação de Células , Mesoderma/crescimento & desenvolvimento , Fatores de Transcrição SOXC/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Elementos Reguladores de Transcrição/fisiologia , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
8.
3D Print Addit Manuf ; 11(2): e709-e717, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689902

RESUMO

Additive manufacturing (AM) can fabricate intricate structures that are infeasible or uneconomical for conventional manufacturing methods. Its unique capabilities have motivated emergence of several printing technologies and extensive research in material adoption in particular ferrous-, Ti-, and Ni-based alloys. Meanwhile, the large freezing range and high reflectivity of aluminum, a lightweight structural material, greatly reduce aluminum's compatibility with AM. The incompatibility roots from aluminum's unstable behavior in the rapid cyclic thermal conditions in AM and its poor interaction with laser. This hinders the development of laser-based aluminum AM and deteriorates the existing lack of lightweight structural materials in the intermediate temperature range. Aluminum matrix composites (AMCs) have great potential to serve as thermally stable lightweight structural materials, combining lightweight nature of aluminum matrix and strength of reinforcement phases. However, fabrication of AMC largely uses conventional methods, achieving only moderate volume fraction of reinforcement while having limited part complexity compared with AM. To address these challenges, in situ reactive printing (IRP) is adopted as a novel AM method, harnessing the reaction product of dissimilar elemental powder mix to fabricate AMC with an ultra-high volume fraction of intermetallic reinforcement. In this study, the effect of titanium addition to elemental aluminum feedstock powder is systematically studied on different aspects, including material processability, microstructural features, and mechanical performances. The results show that IRP can overcome the incompatibility between AM and aluminum and produce AMC with exceptional volume fraction of reinforcements and outstanding stiffness enhancement when compared with existing AM aluminum alloys and other AMCs.

9.
Nat Commun ; 15(1): 1213, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332012

RESUMO

Dysfunction of invariant natural killer T (iNKT) cells contributes to immune resistance of tumors. Most mechanistic studies focus on their static functional status before or after activation, not considering motility as an important characteristic for antigen scanning and thus anti-tumor capability. Here we show via intravital imaging, that impaired motility of iNKT cells and their exclusion from tumors both contribute to the diminished anti-tumor iNKT cell response. Mechanistically, CD1d, expressed on macrophages, interferes with tumor infiltration of iNKT cells and iNKT-DC interactions but does not influence their intratumoral motility. VCAM1, expressed by cancer cells, restricts iNKT cell motility and inhibits their antigen scanning and activation by DCs via reducing CDC42 expression. Blocking VCAM1-CD49d signaling improves motility and activation of intratumoral iNKT cells, and consequently augments their anti-tumor function. Interference with macrophage-iNKT cell interactions further enhances the anti-tumor capability of iNKT cells. Thus, our findings provide a direction to enhance the efficacy of iNKT cell-based immunotherapy via motility regulation.


Assuntos
Células T Matadoras Naturais , Neoplasias , Humanos , Ativação Linfocitária , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia/métodos , Macrófagos/metabolismo , Antígenos CD1d/metabolismo
10.
Development ; 137(14): 2375-84, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20534671

RESUMO

The bone morphogenetic protein (BMP) signaling pathway regulates multiple developmental and homeostatic processes. Mutations in the pathway can cause a variety of somatic and hereditary disorders in humans. Multiple levels of regulation, including extracellular regulation, ensure proper spatiotemporal control of BMP signaling in the right cellular context. We have identified a modulator of the BMP-like Sma/Mab pathway in C. elegans called DRAG-1. DRAG-1 is the sole member of the repulsive guidance molecule (RGM) family of proteins in C. elegans, and is crucial in regulating body size and mesoderm development. Using a combination of molecular genetic and biochemical analyses, we demonstrate that DRAG-1 is a membrane-associated protein that functions at the ligand-receptor level to modulate the Sma/Mab pathway in a cell-type-specific manner. We further show that DRAG-1 positively modulates this BMP-like pathway by using a novel Sma/Mab-responsive reporter. Our work provides a direct link between RGM proteins and BMP signaling in vivo and a simple and genetically tractable system for mechanistic studies of RGM protein regulation of BMP pathways.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Caenorhabditis elegans , Proteínas de Membrana/metabolismo , Transdução de Sinais/genética , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Humanos , Proteínas de Membrana/genética , Mutação , Neurônios/metabolismo , Ligação Proteica/genética , Proteínas/genética , Proteínas/metabolismo
11.
Mol Reprod Dev ; 80(9): 700-17, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23740870

RESUMO

Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGFß) superfamily. BMPs mediate a highly conserved signal transduction cascade through the type-I and type-II serine/threonine kinase receptors and intracellular Smad proteins, which regulate multiple developmental and homeostatic processes. Mutations in this pathway can cause various diseases in humans, such as skeletal disorders, cardiovascular diseases, and various cancers. Multiple levels of regulation, including extracellular regulation, help to ensure proper spatiotemporal control of BMP signaling in the right cellular context. The family of repulsive guidance molecules (RGMs) and the type-I transmembrane protein neogenin, a paralog of DCC (Deleted in Colorectal Cancer), have been implicated in modulating the BMP pathway. In this review, we discuss the properties and functions of RGM proteins and neogenin, focusing on their roles in the modulation of BMP signal transduction.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais/genética , Especificidade da Espécie , Proteínas de Xenopus/genética
12.
ACS Appl Mater Interfaces ; 15(43): 50489-50498, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852198

RESUMO

Due to their remarkable mechanical and chemical properties, Ti-Al-based materials are attracting considerable interest in numerous fields of engineering, such as automotive, aerospace, and defense. With their low density, high strength, and resistance to corrosion and oxidation, these intermetallic alloys and metal-compound composites have found diverse applications. However, additive manufacturing and heat treatment of Ti-Al alloys frequently lead to brittleness and severe formation of defects. The present study delves into the interfacial dynamics of these Ti-Al systems, particularly focusing on the behavior of Ti and Al atoms in the presence of TiAl3 grain boundaries under experimental heat treatment conditions. Using a combination of molecular dynamics and Markov state modeling, we scrutinize the kinetic processes involved in the formation of TiAl3. The molecular dynamics simulation indicates that at the early stage of heat treatment, the predominating process is the diffusion of Al atoms toward the Ti surface through the TiAl3 grain boundaries. Markov state modeling identifies three distinct dynamic states of Al atoms within the Ti/Al mixture that forms during the process, each exhibiting a unique spatial distribution. Using transition time scales as a qualitative measure of the rapidness of the dynamics, it is observed that the Al dynamics is significantly less rapid near the Ti surface compared to the Al surface. Put together, the results offer a comprehensive understanding of the interfacial dynamics and reveal a three-stage diffusion mechanism. The process initiates with the premelting of Al, proceeds with the prevalent diffusion of Al atoms toward the Ti surface, and eventually ceases as the Ti concentration within the mixture progressively increases. The insights gained from this study could contribute significantly to the control and optimization of manufacturing processes for these high-performing Ti-Al-based materials.

13.
Artigo em Inglês | MEDLINE | ID: mdl-37021990

RESUMO

For complex data, high dimension and high noise are challenging problems, and deep matrix factorization shows great potential in data dimensionality reduction. In this article, a novel robust and effective deep matrix factorization framework is proposed. This method constructs a dual-angle feature for single-modal gene data to improve the effectiveness and robustness, which can solve the problem of high-dimensional tumor classification. The proposed framework consists of three parts, deep matrix factorization, double-angle decomposition, and feature purification. First, a robust deep matrix factorization (RDMF) model is proposed in the feature learning, to enhance the classification stability and obtain better feature when faced with noisy data. Second, a double-angle feature (RDMF-DA) is designed by cascading the RDMF features with sparse features, which contains the more comprehensive information in gene data. Third, to avoid the influence of redundant genes on the representation ability, a gene selection method is proposed to purify the features by RDMF-DA, based on the principle of sparse representation (SR) and gene coexpression. Finally, the proposed algorithm is applied to the gene expression profiling datasets, and the performance of the algorithm is fully verified.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37053054

RESUMO

The current data scarcity problem in EEG-based emotion recognition tasks leads to difficulty in building high-precision models using existing deep learning methods. To tackle this problem, a dual encoder variational autoencoder-generative adversarial network (DEVAE-GAN) incorporating spatiotemporal features is proposed to generate high-quality artificial samples. First, EEG data for different emotions are preprocessed as differential entropy features under five frequency bands and divided into segments with a 5s time window. Secondly, each feature segment is processed in two forms: the temporal morphology data and the spatial morphology data distributed according to the electrode position. Finally, the proposed dual encoder is trained to extract information from these two features, concatenate the two pieces of information as latent variables, and feed them into the decoder to generate artificial samples. To evaluate the effectiveness, a systematic experimental study was conducted in this work on the SEED dataset. First, the original training dataset is augmented with different numbers of generated samples; then, the augmented training datasets are used to train the deep neural network to construct the sentiment model. The results show that the augmented datasets generated by the proposed method have an average accuracy of 97.21% on all subjects, which is a 5% improvement compared to the original dataset, and the similarity between the generated data and the original data distribution is proved. These results demonstrate that our proposed model can effectively learn the distribution of raw data to generate high-quality artificial samples, which can effectively train a high-precision affective model.


Assuntos
Emoções , Redes Neurais de Computação , Humanos , Eletrodos , Entropia , Eletroencefalografia
15.
Chemosphere ; 344: 140214, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739128

RESUMO

Sulfamethoxazole (SMX), a widely used antibiotic, has triggered increasing attention due to its extensive detection in wastewater effluent, causing serious ecological threats. Herein, a carbon-based heterogeneous catalyst was developed by the O2 plasma-etching process, regulating oxygen-containing functional groups (OFGs) and defects of carbon nanotubes (O-CNT) to activate peroxymonosulfate (PMS) for highly efficient SMX abatement. Through adjusting the etching time, the desired active sites (i.e., C=O and defects) could be rationally created. Experiments collectively suggested that the degradation of SMX was owing to the contribution of synergism by radical (•OH (17.3%) and SO4•- (39.3%)) and non-radical pathways (1O2, 43.4%), which originated from PMS catalyzed by C=O and defects. In addition, the possible degradation products and transformation pathways of SMX in the system were inferred by combining the Fukui function calculations and the LC-MS/MS analysis. And the possible degradation pathway was effective in reducing the environmental toxicity of SMX, as evidenced by the T.E.S.T. software and the micronucleus experiment on Vicia faba root tip. Also, the catalytic system exhibited excellent performance for different antibiotics removal, such as amoxicillin (AMX), carbamazepine (CBZ) and isopropylphenazone (PRP). This study is expected to provide an alternative strategy for antibiotics removal in water decontamination and detoxification.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Sulfametoxazol/química , Água , Cromatografia Líquida , Descontaminação , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem , Peróxidos/química , Antibacterianos/farmacologia , Antibacterianos/análise , Oxigênio/análise
16.
Cancer Res ; 83(12): 2052-2065, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37098922

RESUMO

Metastases are hard to detect and treat, and they cause most cancer-related deaths. The relative lack of therapies targeting metastases represents a major unmet clinical need. The extracellular matrix (ECM) forms a major component of the tumor microenvironment in both primary and metastatic tumors, and certain ECM proteins can be selectively and abundantly expressed in tumors. Nanobodies against ECM proteins that show selective abundance in metastases have the potential to be used as vehicles for delivery of imaging and therapeutic cargoes. Here, we describe a strategy to develop phage-display libraries of nanobodies against ECM proteins expressed in human metastases, using entire ECM-enriched preparations from triple-negative breast cancer (TNBC) and colorectal cancer metastases to different organs as immunogens. In parallel, LC-MS/MS-based proteomics were used to define a metastasis-associated ECM signature shared by metastases from TNBC and colorectal cancer, and this conserved set of ECM proteins was selectively elevated in other tumors. As proof of concept, selective and high-affinity nanobodies were isolated against an example protein from this signature, tenascin-C (TNC), known to be abundant in many tumor types and to play a role in metastasis. TNC was abundantly expressed in patient metastases and widely expressed across diverse metastatic sites originating from several primary tumor types. Immuno-PET/CT showed that anti-TNC nanobodies bind TNBC tumors and metastases with excellent specificity. We propose that such generic nanobodies against tumors and metastases are promising cancer-agnostic tools for delivery of therapeutics to tumor and metastatic ECM. SIGNIFICANCE: Nanobodies specific for extracellular matrix markers commonly expressed in primary tumors and metastases are promising agents for noninvasive detection of tumors and metastases and potential tools for targeted therapy.


Assuntos
Neoplasias Colorretais , Anticorpos de Domínio Único , Neoplasias de Mama Triplo Negativas , Humanos , Proteômica/métodos , Neoplasias de Mama Triplo Negativas/patologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Matriz Extracelular/metabolismo , Tenascina/metabolismo , Neoplasias Colorretais/patologia , Microambiente Tumoral
17.
Cancer Immunol Res ; 11(12): 1598-1610, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756568

RESUMO

Dysfunction of intratumoral invariant natural killer T (iNKT) cells hinders their antitumor efficacy, but the underlying mechanisms and the relationship with endogenous antigen priming remain to be explored. Here, we report that antigen priming leads to metabolic reprogramming and epigenetic remodeling, which causes functional reprogramming in iNKT cells, characterized by limited cytokine responses upon restimulation but constitutive high cytotoxicity. Mechanistically, impaired oxidative phosphorylation (OXPHOS) in antigen-primed iNKT cells inhibited T-cell receptor signaling, as well as elevation of glycolysis, upon restimulation via reducing mTORC1 activation, and thus led to impaired cytokine production. However, the metabolic reprogramming in antigen-primed iNKT cells was uncoupled with their enhanced cytotoxicity; instead, epigenetic remodeling explained their high expression of granzymes. Notably, intratumoral iNKT cells shared similar metabolic reprogramming and functional reprogramming with antigen-primed iNKT cells due to endogenous antigen priming in tumors, and thus recovery of OXPHOS in intratumoral iNKT cells by ZLN005 successfully enhanced their antitumor responses. Our study deciphers the influences of antigen priming-induced metabolic reprogramming and epigenetic remodeling on functionality of intratumoral iNKT cells, and proposes a way to enhance efficacy of iNKT cell-based antitumor immunotherapy by targeting cellular metabolism.


Assuntos
Células T Matadoras Naturais , Epigênese Genética , Citocinas/metabolismo , Imunoterapia , Antígenos CD1d , Ativação Linfocitária
18.
J Leukoc Biol ; 114(4): 335-346, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37479674

RESUMO

CD8+ invariant natural killer T (iNKT) cells are functionally different from other iNKT cells and are enriched in human but not in mouse. To date, their developmental pathway and molecular basis for fate decision remain unclear. Here, we report enrichment of CD8+ iNKT cells in neonatal mice due to their more rapid maturation kinetics than CD8- iNKT cells. Along developmental trajectories, CD8+ and CD8- iNKT cells separate at stage 0, following stage 0 double-positive iNKT cells, and differ in HIVEP3 expression. HIVEP3 is lowly expressed in stage 0 CD8+ iNKT cells and negatively controls their development, whereas it is highly expressed in stage 0 CD8- iNKT cells and positively controls their development. Despite no effect on IFN-γ, HIVEP3 inhibits granzyme B but promotes interleukin-4 production in CD8+ iNKT cells. Together, we reveal that, as a negative regulator for CD8+ iNKT fate decision, low expression of HIVEP3 in stage 0 CD8+ iNKT cells favors their development and T helper 1-biased cytokine responses as well as high cytotoxicity.

19.
Gland Surg ; 11(2): 504-510, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35284314

RESUMO

Background: Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. PTC is slow growing, and prognosis after surgery is excellent. However, PTC is associated with a high incidence of cervical lymph node metastasis, and usually metastasizes from the central lymph nodes to the ipsilateral cervical and mediastinal lymph nodes. Anatomic studies have shown that the thyroid gland and surrounding tissue have an abundant lymphatic network that facilitates tumor dissemination and lymph node metastasis, there may be many ways to connect lymph nodes on both sides of the neck of patients, which needs further research and discussion. Case Description: We report the case of a 45-year-old female who was diagnosed with thyroid cancer of the right lobe and right lateral lymph node metastasis by fine-needle aspiration (FNA). During surgery, 0.2 mL of carbon nanoparticle (CN) suspension was injected into the right lobe of the thyroid gland, which resulted in black staining of a lymph node at the contralateral entrance point to the recurrent laryngeal nerve (LN-epRLN). The black-stained lymph node was resected, and the pathology results revealed lymph node metastasis from thyroid cancer. The left lobe of the thyroid was benign. Conclusions: Retro-tracheal periesophageal lymph node metastasis may be a rare metastatic pathway in thyroid cancer.

20.
Front Immunol ; 13: 951459, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189258

RESUMO

The aging microenvironment serves important roles in cancers. However, most studies focus on circumscribed hot spots such as immunity and metabolism. Thus, it is well ignored that the aging microenvironment contributes to the proliferation of tumor. Herein, we established three prognosis-distinctive aging microenvironment subtypes, including AME1, AME2, and AME3, based on aging-related genes and characterized them with "Immune Exclusion," "Immune Infiltration," and "Immune Intermediate" features separately. AME2-subtype tumors were characterized by specific activation of immune cells and were most likely to be sensitive to immunotherapy. AME1-subtype tumors were characterized by inhibition of immune cells with high proportion of Catenin Beta 1 (CTNNB1) mutation, which was more likely to be insensitive to immunotherapy. Furthermore, we found that CTNNB1 may inhibit the expression of C-C Motif Chemokine Ligand 19 (CCL19), thus restraining immune cells and attenuating the sensitivity to immunotherapy. Finally, we also established a robust aging prognostic model to predict the prognosis of patients with hepatocellular carcinoma. Overall, this research promotes a comprehensive understanding about the aging microenvironment and immunity in hepatocellular carcinoma and may provide potential therapeutic targets for immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Envelhecimento , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Quimiocinas/uso terapêutico , Humanos , Imunoterapia , Ligantes , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Prognóstico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA