Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 40(21): 10947-10956, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38752855

RESUMO

Many experimental and theoretical studies have shown that the mechanical properties of cells and the extracellular matrix can significantly affect the lifetime and strength of the adhesion clusters of molecular bonds. However, there are few studies on how the shape of the contact surface affects the lifetime and strength of the adhesion clusters of molecular bonds, especially theoretical studies in this area. An idealized model of focal adhesion is adopted, in which two rigid media are bonded together by an array of receptor-ligand bonds modeled as Hookean springs on a complex surface topography, which is described by three parameters: the surface shape factor ß, the length of a single identical surface shape L, and the amplitude of surface shapes w. In this study, systematic Monte Carlo simulations of this model are conducted to study the lifetime of the molecular bond cluster under linear incremental force loading and the strength of the molecular bond cluster under linear incremental displacement loading. We find that both small surface shape amplitudes and large surface shape factors will increase the lifetime and strength of the adhesion cluster, whereas the length of a single surface shape causes oscillations in the lifetime and strength of the cluster, and this oscillation amplitude is affected by the surface shape amplitude and the factor. At the same time, we also find that the pretension in the cluster will play a dominant role in the adhesion strength under large amplitudes and small factors of surface shapes. The physical mechanisms behind these phenomena are that the changes of the length of a single surface shape, the amplitude of surface shapes, and the surface shape factor cause the changes of stress concentration in the adhesion region, bond affinity, and the number of similar affinity bonds.

2.
J Am Chem Soc ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744911

RESUMO

How to optimize the enzyme-like catalytic activity of nanozymes to improve their applicability has become a great challenge. Herein, we present an l-cysteine (l-Cys) coordination-driven self-assembly strategy to activate polyvinylpyrrolidone (PVP)-modified Cu single-atom nanozymes MoOx-Cu-Cys (denoted as MCCP SAzymes) aiming at catalytic tumor-specific therapy. The Cu single atom content of MCCP can be rationally modulated to 10.10 wt %, which activates the catalase (CAT)-like activity of MoOx nanoparticles to catalyze the decomposition of H2O2 in acidic microenvironments to increase O2 production. Excitingly, the maximized CAT-like catalytic efficiency of MCCP is 138-fold higher than that of typical MnO2 nanozymes and exhibits 14.3-fold higher affinity than natural catalase, as demonstrated by steady-state kinetics. We verify that the well-defined l-Cys-Cu···O active sites optimize CAT-like activity to match the active sites of natural catalase through an l-Cys bridge-accelerated electron transfer from Cys-Cu to MoOx disclosed by density functional theory calculations. Simultaneously, the high loading Cu single atoms in MCCP also enable generation of •OH via a Fenton-like reaction. Moreover, under X-ray irradiation, MCCP converts O2 to 1O2 for cascading radiodynamic therapy, thereby facilitating the multiple reactive oxygen species (ROS) for radiosensitization to achieve substantial antitumor.

3.
Small ; 19(20): e2207261, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36808830

RESUMO

As a gaseous second messenger, nitric oxide (NO) plays an important role in a series of signal pathways. Research on the NO regulation for various disease treatments has aroused wide concern. However, the lack of accurate, controllable, and persistent release of NO has significantly limited the application of NO therapy. Profiting from the booming development of advanced nanotechnology, a mass of nanomaterials with the properties of controllable release have been developed to seek new and effective NO nano-delivery approaches. Nano-delivery systems that generate NO through catalytic reactions exhibit unique superiority in terms of precise and persistent release of NO. Although certain achievements have been made in the catalytically active NO delivery nanomaterials, some basic but critical issues, such as the concept of design, are of low attention. Herein, an overview of the generation of NO through catalytic reactions and the design principles of related nanomaterials are summarized. Then, the nanomaterials that generate NO through catalytic reactions are classified. Finally, the bottlenecks and perspectives are also discussed in depth for the future development of catalytical NO generation nanomaterials.


Assuntos
Nanoestruturas , Óxido Nítrico , Óxido Nítrico/metabolismo , Nanotecnologia
4.
Small ; 19(32): e2300341, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029564

RESUMO

With the rapid development of nanotechnology and nanomedicine, there are great interests in employing nanomaterials to improve the efficiency of disease diagnosis and treatment. The clinical translation of hafnium oxide (HfO2 ), commercially namedas NBTXR3, as a new kind of nanoradiosensitizer for radiotherapy (RT) of cancers has aroused extensive interest in researches on Hf-based nanomaterials for biomedical application. In the past 20 years, Hf-based nanomaterials have emerged as potential and important nanomedicine for computed tomography (CT)-involved bioimaging and RT-associated cancer treatment due to their excellent electronic structures and intrinsic physiochemical properties. In this review, a bibliometric analysis method is employed to summarize the progress on the synthesis technology of various Hf-based nanomaterials, including HfO2 , HfO2 -based compounds, and Hf-organic ligand coordination hybrids, such as metal-organic frameworks or nanoscaled coordination polymers. Moreover, current states in the application of Hf-based CT-involved contrasts for tissue imaging or cancer diagnosis are reviewed in detail. Importantly, the recent advances in Hf-based nanomaterials-mediated radiosensitization and synergistic RT with other current mainstream treatments are also generalized. Finally, current challenges and future perspectives of Hf-based nanomaterials with a view to maximize their great potential in the research of translational medicine are also discussed.


Assuntos
Antineoplásicos , Nanoestruturas , Neoplasias , Humanos , Háfnio/química , Nanoestruturas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanotecnologia/métodos
5.
J Obstet Gynaecol ; 42(6): 2051-2057, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35839300

RESUMO

Placenta previa accreta patients were examined using fast-imaging employing steady-state acquisition (FIESTA) and single-shot fast spin echo (SSFSE) sequence. The diagnostic value of the two sequences was compared. FIESTA was better than the SSFSE sequence in displaying outline-boundary (excellent: 82 vs. 26), signal-to-noise ratio (excellent: 75 vs. 54) for placenta and uterus. The direct signs detection rate in FIESTA was higher than SSFSE (implantable: P = .028, adhesive: P = .131, penetrating type: P = .326). The indirect signs detection rate in FIESTA was lower than SSFSE (low-signal density: P = .029, uneven-signal density: P = .328, thicker and more vascular shadow: P = 398). FIESTA combining SSFSE demonstrated higher detecting rates (100% for sensitivity, specificity, and accuracy) for all types than single sequence scanning (FIESTA/SSFSE). In conclusion, FIESTA clearly showed the situation of the placenta and uterus in placenta previa accreta patients, with excellent image quality. A combination of FIESTA and SSFSE can improve the diagnostic value of placenta previa accreta.Important statementWhat is already known on this subject? Placenta previa is the most common cause of vaginal bleeding in the third trimester of pregnancy.What do the results of this study add? FIESTA was better than the SSFSE sequence in displaying images and demonstrated higher detection rates for direct signs and lower detection rate comparing the SSFSE sequence. FIESTA combining SSFSE sequence demonstrated higher detecting rates for implantable, adhesive and penetrating types than single sequence scanning.What are the implications of these findings for clinical practice and/or further research? FIESTA sequence clearly showed the situation of placenta and uterus in placenta previa accreta patients, with excellent image quality. Combination of FIESTA and SSFSE sequences can effectively improve the diagnostic value of placenta previa accreta.


Assuntos
Placenta Acreta , Placenta Prévia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Placenta Acreta/diagnóstico por imagem , Placenta Prévia/diagnóstico por imagem , Gravidez , Diagnóstico Pré-Natal , Estudos Prospectivos , Estudos Retrospectivos
6.
Small ; 11(36): 4774-84, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26099115

RESUMO

The increasing uses of rare-earth-doped upconversion nanoparticles (UCNPs) have obviously caused many concerns about their potential toxicology on live organisms. In addition, the UCNPs can be released into the environment, then transported into edible crop plants, and finally entered into food chain. Here, the soybean is chosen as a model plant to study the subchronic phytotoxicity, translocation, and biotransformation of NaYF4 UCNPs. The incubation with UCNPs at a relative low concentration of 10 µg mL(-1) leads to growth promotion for the roots and stems, while concentration exceeding 50 µg mL(-1) brings concentration-dependent inhibition. Upconversion luminescence imaging and scanning electron microscope characterization show that the UCNPs can be absorbed by roots and parts of the adsorbed UCNPs are then transported through vessels to stems and leaves. The near-edge X-ray absorption fine structure spectra reveal that the adsorbed NaYF4 nanoparticles are relatively stable during a 10 d incubation. Energy-dispersive X-ray spectrum further indicates that a small amount of NaYF4 is dissolved/digested and can transform into Y-phosphate clusters in roots.


Assuntos
Glycine max/metabolismo , Nanopartículas/química , Adsorção , Biotransformação , Produtos Agrícolas , Érbio/química , Fluoretos/química , Luminescência , Metais Terras Raras/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Polietilenoimina/química , Fatores de Tempo , Raios X , Itérbio/química , Ítrio/química
7.
Small ; 10(20): 4160-70, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24979184

RESUMO

Light-triggered drug delivery based on near-infrared (NIR)-mediated photothermal nanocarriers has received tremendous attention for the construction of cooperative therapeutic systems in nanomedicine. Herein, a new paradigm of light-responsive drug carrier that doubles as a photothermal agent is reported based on the NIR light-absorber, Rb(x) WO3 (rubidium tungsten bronze, Rb-TB) nanorods. With doxorubicin (DOX) payload, the DOX-loaded Rb-TB composite (Rb-TB-DOX) simultaneously provides a burst-like drug release and intense heating effect upon 808-nm NIR light exposure. MTT assays show the photothermally enhanced antitumor activity of Rb-TB-DOX to the MCF-7 cancer cells. Most remarkably, Rb-TB-DOX combined with NIR irradiation also shows dramatically enhanced chemotherapeutic effect to DOX-resistant MCF-7 cells compared with free DOX, demonstrating the enhanced efficacy of combinational chemo-photothermal therapy for potentially overcoming drug resistance in cancer chemotherapy. Furthermore, in vivo study of combined chemo-photothermal therapy is also conducted and realized on pancreatic (Pance-1) tumor-bearing nude mice. Apart from its promise for cancer therapy, the as-prepared Rb-TB can also be employed as a new dual-modal contrast agent for photoacoustic tomography and (PAT) X-ray computed tomography (CT) imaging because of its high NIR optical absorption capability and strong X-ray attenuation ability, respectively. The results presented in the current study suggest promise of the multifunctional Rb(x)WO3 nanorods for applications in cancer theranostics.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Nanotubos , Técnicas Fotoacústicas , Fototerapia , Rubídio/química , Tomografia Computadorizada por Raios X , Tungstênio/química , Humanos , Raios Infravermelhos , Células MCF-7
8.
ACS Omega ; 9(17): 18893-18900, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708236

RESUMO

During long-term storage of the liquid propellant N2O4, it absorbs H2O to form the N2O4(H2O)n system, and this in turn generates HNO3, HNO2, and other substances in the storage tank because of corrosion, which seriously affects the performance of weaponry. In this work, we carried out computational simulations of N2O4 with different masses of water based on ReaxFF, analyzed the reaction intermediates and products, and investigated the mechanism of the reaction of N2O4 with H2O and of N2O4(H2O)n. The results show that the reaction product ω(HNO3+HNO2) undergoes a rapid growth in the early stage of the reaction and then tends toward dynamic equilibrium; the potential energy of the system decreases with the increase of ω(H2O), the reaction rate increases, and the rate of decomposition of HNO2 to form HNO3 increases. When ω(H2O) is 0.2 or 1.0%, the intermediate products are N2O4H2O or N2O4(H2O)2, respectively, and the reaction proceeds along two paths; when ω(H2O) ≥ 2.0%, N2O4(H2O)3 appears as the intermediate product, HNO3 and HNO2 are directly produced in one step, and a stable current loop can be formed within the whole system.

9.
J Colloid Interface Sci ; 660: 869-884, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277843

RESUMO

Infiltration and activation of intratumoral T lymphocytes are critical for immune checkpoint blockade (ICB) therapy. Unfortunately, the low tumor immunogenicity and immunosuppressive tumor microenvironment (TME) induced by tumor metabolic reprogramming cooperatively hinder the ICB efficacy. Herein, we engineered a lactate-depleting MOF-based catalytic nanoplatform (LOX@ZIF-8@MPN), encapsulating lactate oxidase (LOX) within zeolitic imidazolate framework-8 (ZIF-8) coupled with a coating of metal polyphenol network (MPN) to reinforce T cell response based on a "two birds with one stone" strategy. LOX could catalyze the degradation of the immunosuppressive lactate to promote vascular normalization, facilitating T cell infiltration. On the other hand, hydrogen peroxide (H2O2) produced during lactate depletion can be transformed into anti-tumor hydroxyl radical (•OH) by the autocatalytic MPN-based Fenton nanosystem to trigger immunogenic cell death (ICD), which largely improved the tumor immunogenicity. The combination of ICD and vascular normalization presents a better synergistic immunopotentiation with anti-PD1, inducing robust anti-tumor immunity in primary tumors and recurrent malignancies. Collectively, our results demonstrate that the concurrent depletion of lactate to reverse the immunosuppressive TME and utilization of the by-product from lactate degradation via cascade catalysis promotes T cell response and thus improves the effectiveness of ICB therapy.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Humanos , Ácido Láctico/farmacologia , Estruturas Metalorgânicas/farmacologia , Peróxido de Hidrogênio/farmacologia , Linfócitos T , Imunoterapia , Linhagem Celular Tumoral , Microambiente Tumoral
10.
ACS Nano ; 18(5): 4189-4204, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38193384

RESUMO

cGAS-STING signaling plays a critical role in radiotherapy (RT)-mediated immunomodulation. However, RT alone is insufficient to sustain STING activation in tumors under a safe X-ray dose. Here, we propose a radiosensitization cooperated with cGAS stimulation strategy by engineering a core-shell structured nanosized radiosensitizer-based cGAS-STING agonist, which is constituted with the hafnium oxide (HfO2) core and the manganese oxide (MnO2) shell. HfO2-mediated radiosensitization enhances immunogenic cell death to afford tumor associated antigens and adequate cytosolic dsDNA, while the GSH-degradable MnO2 sustainably releases Mn2+ in tumors to improve the recognition sensitization of cGAS. The synchronization of sustained Mn2+ supply with cumulative cytosolic dsDNA damage synergistically augments the cGAS-STING activation in irradiated tumors, thereby enhancing RT-triggered local and system effects when combined with an immune checkpoint inhibitor. Therefore, the synchronous radiosensitization with sustained STING activation is demonstrated as a potent immunostimulation strategy to optimize cancer radio-immuotherapy.


Assuntos
Háfnio , Compostos de Manganês , Neoplasias , Humanos , Compostos de Manganês/farmacologia , Óxidos/farmacologia , Óxidos/uso terapêutico , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Nucleotidiltransferases
11.
Small ; 9(11): 1929-38, 1928, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23239556

RESUMO

Upconverting nanoparticles (UCNPs) have attracted considerable attention as potential photosensitizer carriers for photodynamic therapy (PDT) in deep tissues. In this work, a new and efficient NIR photosensitizing nanoplatform for PDT based on red-emitting UCNPs is designed. The red emission band matches well with the efficient absorption bands of the widely used commercially available photosensitizers (Ps), benefiting the fluorescence resonance energy transfer (FRET) from UCNPs to the attached photosensitizers and thus efficiently activating them to generate cytotoxic singlet oxygen. Three commonly used photosensitizers, including chlorine e6 (Ce6), zinc phthalocyanine (ZnPc) and methylene blue (MB), are loaded onto the alpha-cyclodextrin-modified UCNPs to form Ps@UCNPs complexes that efficiently produce singlet oxygen to kill cancer cells under 980 nm near-infrared excitation. Moreover, two different kinds of drugs are co-loaded onto these nanoparticles: chemotherapy drug doxorubicin and PDT agent Ce6. The combinational therapy based on doxorubicin (DOX)-induced chemotherapy and Ce6-triggered PDT exhibits higher therapeutic efficacy relative to the individual means for cancer therapy in vitro.


Assuntos
Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Animais , Clorofilídeos , Transferência Ressonante de Energia de Fluorescência , Humanos , Indóis/química , Indóis/uso terapêutico , Isoindóis , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Nanopartículas/uso terapêutico , Compostos Organometálicos/química , Compostos Organometálicos/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/química , Porfirinas/uso terapêutico , Ratos , Oxigênio Singlete/metabolismo , Compostos de Zinco , alfa-Ciclodextrinas/química
12.
RSC Adv ; 13(18): 12469-12475, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37091598

RESUMO

Liquid propellant N2O4 is prone to absorb H2O to form an N2O4(H2O) n system during long-term storage, ultimately generating HNO3, HNO2, and other substances capable of corroding the storage tank, which will adversely affect the performance of weapons and equipment. In this work, the reaction process of the N2O4(H2O) n system is simulated using density functional theory, and the potential energy surface, the geometric configurations of the molecules, the charge distribution, and the bond parameters of the reaction course at n = 0-3 are analyzed. The results show that the potential energy of the system is lower and the structure is more stable when the H2O in the N2O4(H2O) n system is distributed on the same side. When n = 1 or 2, the reaction profiles are similar, and the systems are partly ionic, although still mainly covalently bonded. When n = 3, the charge on the trans-ONONO2 group and the ON-ONO2 bond length change abruptly to -0.503 a.u. and 2.57 Å, respectively, at which point the system is dominated by ionic bonds. At n = 2, a proton-transfer phenomenon occurs in the reaction course, with partial reverse charge-transfer from NO3 - to NO+, making the ON-ONO2 bond less susceptible to cleavage, further verifying that N2O4(H2O) n tends to afford the products directly in one step as H2O accumulates in the system.

13.
Acta Biomater ; 169: 289-305, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544392

RESUMO

Immunotherapy is an emerging antitumor modality with high specificity and persistence, but its application for resected tumor treatment is impeded by the low availability of tumor-specific antigens and strong immunosuppression in the wound margin. Here a nanoengineered hydrogel is developed for eliciting robust cooperative ferroptosis-immunotherapeutic effect on resected tumors. Specifically, ß-cyclodextrin (ß-CD) is first grafted onto oxidized sodium alginate (OSA) through Schiff base ligation, which could trap cRGD-modified redox-responsive Withaferin prodrugs (WA-cRGD) to obtain the hydrogel building blocks (Gel@WA-cRGD). Under Ca2+-mediated crosslinking, Gel@WA-cRGD rapidly forms physiologically stable hydrogels, of which the porous network is used to deliver programmed cell death ligand 1 antibodies (aPD-L1). After injection into the post-surgical wound cavity, the ß-CD-entrapped WA-cRGD is detached by the local acidity and specifically internalized by residual tumor cells to trigger ferroptosis, thus releasing abundant damage-associated molecular patterns (DAMPs) and tumor-derived antigens for activating the antigen-presenting cell-mediated cross-presentation and downstream cytotoxic T cell (CTL)-mediated antitumor responses. Furthermore, aPD-L1 could block PD-1/PD-L1 interaction and enhance the effector function of CTLs to overcome tumor cell-mediated immunosuppression. This cooperative hydrogel-based antitumor strategy for ferroptosis-immunotherapy may serve as a generally-applicable approach for postoperative tumor management. STATEMENT OF SIGNIFICANCE: To overcome the immunosuppressive microenvironment in resected solid tumors for enhanced patient survival, here we report a nanoengineered hydrogel incorporated supramolecular redox-activatable Withaferin prodrug and PD-L1 antibody, which could elicit robust cooperative ferroptosis-immunotherapeutic effect against residual tumor cells in the surgical bed to prevent tumor relapse, thus offering a generally-applicable approach for postoperative tumor management.


Assuntos
Ferroptose , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Antígeno B7-H1 , Hidrogéis/farmacologia , Neoplasia Residual , Recidiva Local de Neoplasia , Imunoterapia , Antígenos de Neoplasias , Microambiente Tumoral , Linhagem Celular Tumoral
14.
ACS Nano ; 17(24): 25419-25438, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38055636

RESUMO

Low-dose radiotherapy (LDR) has shown significant implications for inflaming the immunosuppressive tumor microenvironment (TME). Surprisingly, we identify that FABP-dependent lipid droplet biogenesis in tumor cells is a key determinant of LDR-evoked cytotoxic and immunostimulatory effects and developed a nanointegrated strategy to promote the antitumor efficacy of LDR through cooperative ferroptosis immunotherapy. Specifically, TCPP-TK-PEG-PAMAM-FA, a nanoscale multicomponent functional polymer with self-assembly capability, was synthesized for cooperatively entrapping hafnium ions (Hf4+) and HIF-1α-inhibiting siRNAs (siHIF-1α). The TCPP@Hf-TK-PEG-PAMAM-FA@siHIF-1α nanoassemblies are specifically taken in by folate receptor-overexpressing tumor cells and activated by the elevated cellular ROS stress. siHIF-1α could readily inhibit the FABP3/7 expression in tumor cells via HIF-1α-FABP3/7 signaling and abolish lipid droplet biogenesis for enhancing the peroxidation susceptibility of membrane lipids, which synergizes with the elevated ROS stress in the context of Hf4+-enhanced radiation exposure and evokes pronounced ferroptotic damage in vital membrane structures. Interestingly, TCPP@Hf-TK-PEG-PAMAM-FA@siHIF-1α-enhanced ferroptotic biomembrane damage also facilitates the exposure of tumor-associated antigens (TAAs) to promote post-LDR immunotherapeutic effects, leading to robust tumor regression in vivo. This study offers a nanointegrative approach to boost the antitumor effects of LDR through the utilization of tumor-intrinsic lipid metabolism.


Assuntos
Ferroptose , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Gotículas Lipídicas , Neoplasias/radioterapia , Imunoterapia , Linhagem Celular Tumoral , Microambiente Tumoral
15.
ACS Nano ; 17(14): 13195-13210, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37256771

RESUMO

Radiotherapy (RT) is one of the important clinical treatments for local control of triple-negative breast cancer (TNBC), but radioresistance still exists. Ferroptosis has been recognized as a natural barrier for cancer progression and represents a significant role of RT-mediated anticancer effects, while the simultaneous activation of ferroptosis defensive system during RT limits the synergistic effect between RT and ferroptosis. Herein, we engineered a tumor microenvironment (TME) degradable nanohybrid with a dual radiosensitization manner to combine ferroptosis induction and high-Z effect based on metal-organic frameworks for ferroptosis-augmented RT of TNBC. The encapsulated l-buthionine-sulfoximine (BSO) could inhibit glutathione (GSH) biosynthesis for glutathione peroxidase 4 (GPX4) inactivation to break down the ferroptosis defensive system, and the delivered ferrous ions could act as a powerful ferroptosis executor via triggering the Fenton reaction; the combination of them induces potent ferroptosis, which could synergize with the surface decorated Gold (Au) NPs-mediated radiosensitization to improve RT efficacy. In vivo antitumor results revealed that the nanohybrid could significantly improve the therapeutic efficacy and antimetastasis efficiency based on the combinational mechanism between ferroptosis and RT. This work thus demonstrated that combining RT with efficient ferroptosis induction through nanotechnology was a feasible and promising strategy for TNBC treatment.


Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Anestésicos Locais , Butionina Sulfoximina , Fibrinolíticos , Glutationa , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Chemistry ; 18(30): 9239-45, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22729946

RESUMO

Under 980 nm near-infrared (NIR) excitation, upconversion luminescent (UCL) emission of GdF(3):Yb,Er upconversion nanoparticles (UCNPs) synthesized by a simple and green hydrothermal process can be tuned from yellow to red by varying the concentration of dopant Li(+) ions. A possible mechanism for enhanced red upconverted radiation is proposed. A layer of silica was coated onto the surface of GdF(3):Yb,Er,Li UCNPs to improve their biocompatibility. The silica-coated GdF(3):Yb,Er,Li UCNPs show great advantages in cell labeling and in vivo optical imaging. Moreover, GdF(3) UCNPs also exhibited a positive contrast effect in T(1)-weighted magnetic resonance imaging (MRI). These results suggest that the GdF(3) UCNPs could act as dual-modality biolabels for optical imaging and MRI.


Assuntos
Gadolínio/química , Lítio/química , Itérbio/química , Ítrio/química , Diagnóstico por Imagem/métodos , Luminescência , Imageamento por Ressonância Magnética , Nanopartículas/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos
17.
J Orthop Surg Res ; 17(1): 125, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35216590

RESUMO

BACKGROUND: We separately ligated the arteries and veins of dogs to establish a canine femoral head necrosis model, then compared the differences between the outcomes of the two ligation methods on canine femoral heads. METHODS: Twenty-four dogs in this experiment were randomly and evenly sorted into two groups (Group A, the arterial group; and Group B, the venous group). In dogs in Group A, the unilateral deep femoral arteries of the hips were ligated. In dogs in Group B, the unilateral deep femoral veins of the hips were ligated. Two dogs from each group were randomly selected at the 2nd, 4th, 6th, 8th, 10th, and 12th weeks postoperatively and were marked as Groups A1-A6 and B1-B6 according to the selection times. The dogs underwent X-ray (DR) and a magnetic resonance imaging (MRI) plain scan (1.5 T) on both hip joints and were then sacrificed. Bilateral femoral head specimens were soaked in formalin and then decalcified. Hematoxylin-eosin (HE) staining and histopathologic evaluation were performed on the tissue sections. RESULTS: In dogs in Group B, abnormal pathologic changes, such as adipocytes fusing into cysts, were observed at the 4th week after establishing the model. MRI scans showed abnormal signal intensity at the 6th week, and fibrocyte regrowth was demonstrated in the necrotic area of the femoral heads at the 10th week. At the same time, indicators of tissue repair and fresh granulation tissue emerged. Changes in dogs in Group A, such as interstitial haemorrhage and oedema, were not noted in pathologic sections until 6 weeks after the model was established. MRI showed abnormal signals, such as a linear low signal intensity in the weight-bearing area of the femoral heads at the 8th week. New blood vessels emerged in the necrotic area at the 12th week, while there was no proliferation of fibrocytes and tissues. CONCLUSIONS: The development and evolution of femoral head necrosis caused by ligation of the main veins of the femoral head in dogs appeared earlier than in dogs with arterial ligation, and pathologic changes, such as necrosis and repair, were more significant in dogs in the venous group than in dogs in the other group.


Assuntos
Artérias/cirurgia , Necrose da Cabeça do Fêmur/etiologia , Cabeça do Fêmur/diagnóstico por imagem , Ligadura , Veias/cirurgia , Animais , Cães , Cabeça do Fêmur/irrigação sanguínea , Cabeça do Fêmur/cirurgia , Quadril/patologia , Imageamento por Ressonância Magnética
18.
Adv Healthc Mater ; 11(8): e2200143, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35195958

RESUMO

With the successful marriage between nanotechnology and oncology, various high-Z element containing nanoparticles (NPs) are approved as radiosensitizers to overcome radiation resistance for enhanced radiotherapy (RT). Unfortunately, NPs themselves lack specificity to tumors. Due to the inherent tropism nature of malignant cells, mesenchymal stem cells (MSCs) emerge as cell-mediated delivery vehicles for functional NPs to improve their therapeutic index. Herein, radiosensitive bismuth selenide (Bi2 Se3 ) NPs-laden adipose-derived mesenchymal stromal cells (AD-MSCs/Bi2 Se3 ) are engineered for targeted RT of non-small cell lung cancer (NSCLC). The results reveal that the optimized intracellular loading strategy hardly affects cell viability, specific surface markers, or migration capability of AD-MSCs, and Bi2 Se3  NPs can be efficiently transported from AD-MSCs to tumor cells. In vivo biodistribution test shows that the Bi2 Se3 NPs accumulation in tumor is increased 20 times via AD-MSCs-mediated delivery. Therefore, AD-MSCs/Bi2 Se3 administration synchronized with X-ray irradiation controls the tumor progress well in orthotopic A549 tumor bearing mice. Considering that MSCs migrate better to irradiated tumor cells in comparison to nonirradiated ones and MSCs preferentially accumulate within lung tissues after systemic administration into accounts, the tumor-tropic MSCs/NPs system is feasible and promising for targeted RT treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Radiossensibilizantes , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Linhagem Celular Tumoral , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Distribuição Tecidual
19.
Nanomaterials (Basel) ; 12(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432344

RESUMO

Silver nanoparticles (Ag NPs), a commonly used antibacterial nanomaterial, exhibit broad-spectrum antibacterial activity to combat drug-resistant bacteria. However, the Ag NPs often causes a low availability and high toxicity to living bodies due to their easy aggregation and uncontrolled release of Ag+ in the bacterial microenvironment. Here, we report a porous metal-organic framework (MOF)-based Zr-2-amin-1,4-NH2-benzenedicarboxylate@Ag (denoted as UiO-66-NH2-Ag) nanocomposite using an in-situ immobilization strategy where Ag NPs were fixed on the UiO-66-NH2 for improving the dispersion and utilization of Ag NPs. As a result, the reduced use dose of Ag NPs largely improves the biosafety of the UiO-66-NH2-Ag. Meanwhile, after activation by the Ag NPs, the UiO-66-NH2-Ag can act as nanozyme with high peroxidase (POD)-like activity to efficiently catalyze the decomposition of H2O2 to extremely toxic hydroxyl radicals (·OH) in the bacterial microenvironment. Simultaneously, the high POD-like activity synergies with the controllable Ag+ release leads to enhanced reactive oxygen species (ROS) generation, facilitating the death of resistant bacteria. This synergistic antibacterial strategy enables the low concentration (12 µg/mL) of UiO-66-NH2-Ag to achieve highly efficient inactivation of ampicillin-resistant Escherichia coli (AmprE. coli) and endospore-forming Bacillus subtilis (B. subtilis). In vivo results illustrate that the UiO-66-NH2-Ag nanozyme has a safe and accelerated bacteria-infected wound healing.

20.
Acta Biomater ; 141: 364-373, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063709

RESUMO

Tumor vasculature-targeting therapy either using angiogenesis inhibitors or vascular disrupting agents offers an important new avenue for cancer therapy. In this work, a tumor-specific catalytic nanomedicine for enhanced tumor ablation accompanied with tumor vasculature disruption and angiogenesis inhibition was developed through a cascade reaction with enzyme glucose oxidase (GOD) modified on Fe-based metal organic framework (Fe-MOF) coupled with anti-VEGFR2.The GOD enzyme could catalyze the intratumoral glucose decomposition to trigger tumor starvation and yet provide abundant hydrogen peroxide as the substrate for Fenton-like reaction catalyzed by Fe-MOF to produce sufficient highly toxic hydroxyl radicals for enhanced chemodynamic therapy and instantly attacked tumor vascular endothelial cells to destroy the existing vasculature, while the anti-VEGFR2 antibody guided the nanohybrids to target blood vessels and block the VEGF-VEGFR2 connection to prevent angiogenesis. Both in vitro and in vivo results demonstrated the smart nanohybrids could cause the tumor cell apoptosis and vasculature disruption, and exhibited enhanced tumor regression in A549 xenograft tumor-bearing mice model. This study suggested that synergistic targeting tumor growth and its vasculature network would be more promising for curing solid tumors. STATEMENT OF SIGNIFICANCE: Cooperative destruction of tumor cells and tumor vasculature offers a potential avenue for cancer therapy. Under this premise, a tumor-specific catalytic nanomedicine for enhanced tumor ablation accompanied with tumor vasculature disruption and new angiogenesis inhibition was developed through a cascade reaction with glucose oxidase modified on the surface of iron-based metal organic framework coupled with VEGFR2 antibody. The resulting data demonstrated that a therapeutic regimen targeting tumor growth as well as its vasculature with both existing vasculature disruption and neovasculature inhibition would be more potential for complete eradication of tumors.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Animais , Catálise , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Glucose Oxidase/química , Humanos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA