Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(3): e23453, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318639

RESUMO

During early development, both genome-wide epigenetic reprogramming and metabolic remodeling are hallmark changes of normal embryogenesis. However, little is known about their relationship and developmental functions during the preimplantation window, which is essential for the acquisition of totipotency and pluripotency. Herein, we reported that glutathione (GSH), a ubiquitous intracellular protective antioxidant that maintains mitochondrial function and redox homeostasis, plays a critical role in safeguarding postfertilization DNA demethylation and is essential for establishing developmental potential in preimplantation embryos. By profiling mitochondria-related transcriptome that coupled with different pluripotency, we found GSH is a potential marker that is tightly correlated with full pluripotency, and its beneficial effect on prompting developmental potential was functionally conformed using in vitro fertilized mouse and bovine embryos as the model. Mechanistic study based on preimplantation embryos and embryonic stem cells further revealed that GSH prompts the acquisition of totipotency and pluripotency by facilitating ten-eleven-translocation (TET)-dependent DNA demethylation, and ascorbic acid (AsA)-GSH cycle is implicated in the process. In addition, we also reported that GSH serves as an oviductal paracrine factor that supports development potential of preimplantation embryos. Thus, our results not only advance the current knowledge of functional links between epigenetic reprogramming and metabolic remodeling during preimplantation development but also provided a promising approach for improving current in vitro culture system for assisted reproductive technology.


Assuntos
Desmetilação do DNA , Metilação de DNA , Animais , Bovinos , Camundongos , Blastocisto/metabolismo , Células-Tronco Embrionárias/metabolismo , Glutationa/metabolismo , Desenvolvimento Embrionário/genética
2.
Proc Natl Acad Sci U S A ; 119(30): e2201168119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858425

RESUMO

Mitochondrial remodeling during the peri-implantation stage is the hallmark event essential for normal embryogenesis. Among the changes, enhanced oxidative phosphorylation is critical for supporting high energy demands of postimplantation embryos, but increases mitochondrial oxidative stress, which in turn threatens mitochondrial DNA (mtDNA) stability. However, how mitochondria protect their own histone-lacking mtDNA, during this stage remains unclear. Concurrently, the mitochondrial genome gain DNA methylation by this stage. Its spatiotemporal coincidence with enhanced mitochondrial stress led us to ask if mtDNA methylation has a role in maintaining mitochondrial genome stability. Herein, we report that mitochondrial genome undergoes de novo mtDNA methylation that can protect mtDNA against enhanced oxidative damage during the peri-implantation window. Mitochondrial genome gains extensive mtDNA methylation during transition from blastocysts to postimplantation embryos, thus establishing relatively hypermethylated mtDNA from hypomethylated state in blastocysts. Mechanistic study revealed that DNA methyltransferase 3A (DNMT3A) and DNMT3B enter mitochondria during this process and bind to mtDNA, via their unique mitochondrial targeting sequences. Importantly, loss- and gain-of-function analyses indicated that DNMT3A and DNMT3B are responsible for catalyzing de novo mtDNA methylation, in a synergistic manner. Finally, we proved, in vivo and in vitro, that increased mtDNA methylation functions to protect mitochondrial genome against mtDNA damage induced by increased mitochondrial oxidative stress. Together, we reveal mtDNA methylation dynamics and its underlying mechanism during the critical developmental window. We also provide the functional link between mitochondrial epigenetic remodeling and metabolic changes, which reveals a role for nuclear-mitochondrial crosstalk in establishing mitoepigenetics and maintaining mitochondrial homeostasis.


Assuntos
Metilação de DNA , DNA Mitocondrial , Implantação do Embrião , Genoma Mitocondrial , Estresse Oxidativo , Animais , Blastocisto/enzimologia , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A/genética , DNA Metiltransferase 3A/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Implantação do Embrião/genética , Mutação com Ganho de Função , Mutação com Perda de Função , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , DNA Metiltransferase 3B
3.
FASEB J ; 37(12): e23295, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37984844

RESUMO

C-natriuretic peptide (CNP) is the central regulator of oocyte meiosis progression, thus coordinating synchronization of oocyte nuclear-cytoplasmic maturation. However, whether CNP can independently regulate cytoplasmic maturation has been long overlooked. Mitochondrial DNA (mtDNA) accumulation is the hallmark event of cytoplasmic maturation, but the mechanism underlying oocyte mtDNA replication remains largely elusive. Herein, we report that CNP can directly stimulate oocyte mtDNA replication at GV stage, and deficiency of follicular CNP may contribute largely to lower mtDNA copy number in in vitro matured oocytes. The mechanistic study showed that cAMP-PKA-CREB1 signaling cascade underlies the regulatory role of CNP in stimulating mtDNA replication and upregulating related genes. Of interest, we also report that CNP-NPR2 signaling is inhibited in aging follicles, and this inhibition is implicated in lower mtDNA copy number in oocytes from aging females. Together, our study provides the first direct functional link between follicular CNP and oocyte mtDNA replication, and identifies its involvement in aging-associated mtDNA loss in oocytes. These findings, not only update the current knowledge of the functions of CNP in coordinating oocyte maturation but also present a promising strategy for improving in vitro fertilization outcomes of aging females.


Assuntos
DNA Mitocondrial , Técnicas de Maturação in Vitro de Oócitos , Feminino , Humanos , DNA Mitocondrial/genética , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/farmacologia , Oócitos/fisiologia , Meiose , Peptídeos Natriuréticos/genética , Vasodilatadores
4.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34031239

RESUMO

C-natriuretic peptide (CNP) and its receptor guanylyl cyclase, natriuretic peptide receptor 2 (NPR2), are key regulators of cyclic guanosine monophosphate (cGMP) homeostasis. The CNP-NPR2-cGMP signaling cascade plays an important role in the progression of oocyte meiosis, which is essential for fertility in female mammals. In preovulatory ovarian follicles, the luteinizing hormone (LH)-induced decrease in CNP and its encoding messenger RNA (mRNA) natriuretic peptide precursor C (Nppc) are a prerequisite for oocyte meiotic resumption. However, it has never been determined how LH decreases CNP/Nppc In the present study, we identified that tristetraprolin (TTP), also known as zinc finger protein 36 (ZFP36), a ubiquitously expressed mRNA-destabilizing protein, is the critical mechanism that underlies the LH-induced decrease in Nppc mRNA. Zfp36 mRNA was transiently up-regulated in mural granulosa cells (MGCs) in response to the LH surge. Loss- and gain-of-function analyses indicated that TTP is required for Nppc mRNA degradation in preovulatory MGCs by targeting the rare noncanonical AU-rich element harbored in the Nppc 3' UTR. Moreover, MGC-specific knockout of Zfp36, as well as lentivirus-mediated knockdown in vivo, impaired the LH/hCG-induced Nppc mRNA decline and oocyte meiotic resumption. Furthermore, we found that LH/hCG activates Zfp36/TTP expression through the EGFR-ERK1/2-dependent pathway. Our findings reveal a functional role of TTP-induced mRNA degradation, a global posttranscriptional regulation mechanism, in orchestrating the progression of oocyte meiosis. We also provided a mechanism for understanding CNP-dependent cGMP homeostasis in diverse cellular processes.


Assuntos
Meiose , Peptídeo Natriurético Tipo C/biossíntese , Folículo Ovariano/metabolismo , Ovulação , Estabilidade de RNA , RNA Mensageiro/metabolismo , Tristetraprolina/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos ICR , Peptídeo Natriurético Tipo C/genética , RNA Mensageiro/genética , Tristetraprolina/genética
5.
J Biol Chem ; 298(1): 101456, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861240

RESUMO

Well-orchestrated maternal-fetal cross talk occurs via secreted ligands, interacting receptors, and coupled intracellular pathways between the conceptus and endometrium and is essential for successful embryo implantation. However, previous studies mostly focus on either the conceptus or the endometrium in isolation. The lack of integrated analysis impedes our understanding of early maternal-fetal cross talk. Herein, focusing on ligand-receptor complexes and coupled pathways at the maternal-fetal interface in sheep, we provide the first comprehensive proteomic map of ligand-receptor pathway cascades essential for embryo implantation. We demonstrate that these cascades are associated with cell adhesion and invasion, redox homeostasis, and the immune response. Candidate interactions and their physiological roles were further validated by functional experiments. We reveal the physical interaction of albumin and claudin 4 and their roles in facilitating embryo attachment to endometrium. We also demonstrate a novel function of enhanced conceptus glycolysis in remodeling uterine receptivity by inducing endometrial histone lactylation, a newly identified histone modification. Results from in vitro and in vivo models supported the essential role of lactate in inducing endometrial H3K18 lactylation and in regulating redox homeostasis and apoptotic balance to ensure successful implantation. By reconstructing a map of potential ligand-receptor pathway cascades at the maternal-fetal interface, our study presents new concepts for understanding molecular and cellular mechanisms that fine-tune conceptus-endometrium cross talk during implantation. This provides more direct and accurate insights for developing potential clinical intervention strategies to improve pregnancy outcomes following both natural and assisted conception.


Assuntos
Histonas , Útero , Animais , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Feminino , Histonas/metabolismo , Ligantes , Gravidez , Proteômica , Ovinos , Útero/metabolismo
6.
Biol Proced Online ; 25(1): 29, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953280

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related deaths worldwide, primarily due to its propensity for metastasis. Patients diagnosed with localized primary cancer have higher survival rates than those with metastasis. Thus, it is imperative to discover biomarkers for the early detection of NSCLC and the timely prediction of tumor metastasis to improve patient outcomes. METHODS: Here, we utilized an integrated approach to isolate and characterize plasma exosomes from NSCLC patients as well as healthy individuals. We then conducted proteomics analysis and parallel reaction monitoring to identify and validate the top-ranked proteins of plasma exosomes. RESULTS: Our study revealed that the proteome in exosomes from NSCLC patients with metastasis was distinctly different from that from healthy individuals. The former had larger diameters and lower concentrations of exosomes than the latter. Furthermore, among the 1220 identified exosomal proteins, we identified two distinct panels of biomarkers. The first panel of biomarkers (FGB, FGG, and VWF) showed potential for early NSCLC diagnosis and demonstrated a direct correlation with the survival duration of NSCLC patients. The second panel of biomarkers (CFHR5, C9, and MBL2) emerged as potential biomarkers for assessing NSCLC metastasis, of which CFHR5 alone was significantly associated with the overall survival of NSCLC patients. CONCLUSIONS: These findings underscore the potential of plasma exosomal biomarkers for early NSCLC diagnosis and metastasis prediction. Notably, CFHR5 stands out as a promising prognostic indicator for NSCLC patients. The clinical utility of exosomal biomarkers offers the potential to enhance the management of NSCLC.

7.
Molecules ; 28(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110589

RESUMO

Antiplatelet aggregation agents have demonstrated clinical benefits in the treatment of ischemic stroke. In our study, a series of novel nitric oxide (NO)-donating ligustrazine derivatives were designed and synthesized as antiplatelet aggregation agents. They were evaluated for the inhibitory effect on 5'-diphosphate (ADP)-induced and arachidonic acid (AA)-induced platelet aggregation in vitro. The results showed that compound 15d displayed the best activity in both ADP-induced and AA-induced assays, and compound 14a also showed quite better activity than ligustrazine. The preliminary structure-activity relationships of these novel NO-donating ligustrazine derivatives were discussed. Moreover, these compounds were docked with the thromboxane A2 receptor to study the structure-activity relationships. These results suggested that the novel NO-donating ligustrazine derivatives 14a and 15d deserve further study as potent antiplatelet aggregation agents.


Assuntos
Óxido Nítrico , Inibidores da Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Óxido Nítrico/farmacologia , Agregação Plaquetária , Pirazinas/farmacologia , Relação Estrutura-Atividade , Ácido Araquidônico/farmacologia
8.
Cancer Cell Int ; 22(1): 356, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376934

RESUMO

Metastasis is the primary cause of death in lung cancer patients. However, until now, effective drugs and intervention strategies for treating lung cancer metastasis have been lacking. This hypothesis focuses on circulating tumour cells (CTCs) to develop a new antimetastatic therapeutic strategy for lung cancer. Here, we outline the role of CTCs in tumour metastasis and their functional effects during the treatment of lung cancer patients. Additionally, we hypothesized the possibility of CTCs as a novel biomarker and therapeutic target in preventing and treating metastasis in patients with early-stage lung cancer. We hope that the realization of this hypothesis will improve the overall survival of lung cancer.

9.
FASEB J ; 35(11): e21972, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34613642

RESUMO

The misalignment of eating time and the endogenous circadian rhythm impairs the body's ability to maintain homeostasis. Although it is well established that children and growing animals differ from adults in their energy metabolism and behavioral patterns, little is known about how mistimed feeding disturbs the diurnal rhythms of behavior and metabolism in children and growing diurnal animals. In this study, growing pigs (diurnal animal) were randomly assigned to the daytime-restricted feeding (DRF) and nighttime-restricted feeding (NRF) groups for 5 weeks. Compared with observations in the DRF group, NRF disrupted the diurnal rhythm of behavior and clock genes and lowered the serum ghrelin, dopamine, and serotonin levels during the daytime and nighttime. Microbiome analysis results suggested that NRF altered the diurnal rhythm and composition of the gut microbiota, and increased log-ratios of Catenibacterium:Butyrivibrio and Streptococcus:Butyrivibrio. Based on the serum proteome, the results further revealed that rhythmic and upregulated proteins in NRF were mainly involved in oxidative stress, lipid metabolism, immunity, and cancer biological pathways. Serum physiological indicators further confirmed that NRF decreased the concentration of melatonin and fibroblast growth factor 21 during the daytime and nighttime, increased the diurnal amplitude and concentrations of very-low-density lipoprotein cholesterol, triglyceride, and total cholesterol, and increased the apolipoprotein B/ApoA1 ratio, which is a marker of metabolic syndrome. Taken together, this study is the first to reveal that mistimed feeding disrupts the behavioral rhythms of growing pigs, reprograms gut microbiota composition, reduces the serum levels of hormones associated with fighting depression and anxiety, and increases the risk of lipid metabolic dysregulation.


Assuntos
Ritmo Circadiano , Comportamento Alimentar , Metabolismo dos Lipídeos , Animais , Suínos
10.
FASEB J ; 35(1): e21166, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184921

RESUMO

An unfavorable lifestyle disrupts the circadian rhythm, leading to metabolic dysfunction in adult humans and animals. Increasing evidence suggests that night-restricted feeding (NRF) can effectively prevent ectopic fat deposition caused by circadian rhythm disruption, and reduce the risk of metabolic diseases. However, previous studies have mainly focused on the prevention of obesity in adults by regulating dietary patterns, whereas limited attention has been paid to the effect of NRF on metabolism during growth and development. Here, we used weaning rabbits as models and found that NRF increased body weight gain without increasing feed intake, and promoted insulin-mediated protein synthesis through the mTOR/S6K pathway and muscle formation by upregulating MYOG. NRF improved the circadian clock, promoted PDH-regulated glycolysis and CPT1B-regulated fatty-acid ß-oxidation, and reduced fat content in the serum and muscles. In addition, NRF-induced body temperature oscillation might be partly responsible for the improvement in the circadian clock and insulin sensitivity. Time-restricted feeding could be used as a nondrug intervention to prevent obesity and accelerate growth in adolescents.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Ingestão de Alimentos , Comportamento Alimentar , Obesidade , Animais , Masculino , Obesidade/metabolismo , Obesidade/patologia , Obesidade/prevenção & controle , Coelhos
11.
Med Sci Monit ; 28: e937131, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35871777

RESUMO

BACKGROUND Lung adenocarcinoma (LUAD) is the most common type of lung cancer, which poses a serious threat to human life and health. -(-)Guaiol, an effective ingredient of many medicinal herbs, has been shown to have a high potential for tumor interference and suppression. However, knowledge of pharmacological mechanisms is still lacking adequate identification or interpretation. MATERIAL AND METHODS The genes of LUAD patients collected from TCGA were analyzed using limma and WGCNA. In addition, targets of (-)-Guaiol treating LUAD were selected through a prediction network. Venn analysis was then used to visualize the overlapping genes, which were further condensed using the PPI network. GO and KEGG analyses were performed sequentially, and the essential targets were evaluated and validated using molecular docking. In addition, cell-based verification, including the CCK-8 assay, cell death assessment, apoptosis analysis, and western blot, was performed to determine the mechanism of action of (-)-Guaiol. RESULTS The genes included 959 differentially-expressed genes, 6075 highly-correlated genes, and 480 drug-target genes. Through multivariate analysis, 23 hub genes were identified and functional enrichment analyses revealed that the PI3K/Akt signaling pathway was the most significant. Experiment results showed that -(-)Guaiol can inhibit LUAD cell growth and induce apoptosis. Additional evidence suggested that the PI3K/Akt signaling pathway established an inseparable role in the antitumor processes of -(-)Guaiol, which is consistent with network pharmacology results. CONCLUSIONS Our results show that the effect of (-)-Guaiol in LUAD treatment involves the PI3K/Akt signaling pathway, providing a useful reference and medicinal value in the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sesquiterpenos de Guaiano
12.
Biol Reprod ; 104(5): 1114-1125, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33511405

RESUMO

Conventional heterologous mitochondrial replacement therapy is clinically complicated by "tri-parental" ethical concerns and limited source of healthy donor oocytes or zygotes. Autologous mitochondrial transfer is a promising alternative in rescuing poor oocyte quality and impaired embryo developmental potential associated with mitochondrial disorders, including aging. However, the efficacy and safety of mitochondrial transfer from somatic cells remains largely controversial, and unsatisfying outcomes may be due to distinct mitochondrial state in somatic cells from that in oocytes. Here, we propose a potential strategy for improving in vitro fertilization (IVF) outcomes of aging female patients via mitochondrial transfer from induced pluripotent stem (iPS) cells. Using naturally aging mice and well-established cell lines as models, we found iPS cells and oocytes share similar mitochondrial morphology and functions, whereas the mitochondrial state in differentiated somatic cells is substantially different. By microinjection of isolated mitochondria into fertilized oocytes following IVF, our results indicate that mitochondrial transfer from iPS, but not MEF cells, can rescue the impaired developmental potential of embryos from aging female mice and obtain an enhanced implantation rate following embryo transfer. The beneficial effect may be explained by the fact that mitochondrial transfer from iPS cells not only compensates for aging-associated loss of mtDNA, but also rescues mitochondrial metabolism of subsequent preimplantation embryos. Using mitochondria from iPS cells as the donor, our study not only proposes a promising strategy for improving IVF outcomes of aging females, but also highlights the importance of synchronous mitochondrial state in supporting embryo developmental potential.


Assuntos
Envelhecimento , Blastocisto/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/fisiologia , Animais , Linhagem Celular , Feminino , Fertilização in vitro , Camundongos , Camundongos Endogâmicos ICR
13.
J Nanobiotechnology ; 19(1): 323, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654435

RESUMO

Knocking down the oncogene ROC1 with siRNA inhibits the proliferation of cancer cells by suppressing the Neddylation pathway. However, methods for delivering siRNA in vivo to induce this high anticancer activity with low potential side effects are urgently needed. Herein, a folic acid (FA)-modified polydopamine (PDA) nanomedicine used in photothermal therapy was designed for siRNA delivery. The designed nanovector can undergo photothermal conversion with good biocompatibility. Importantly, this genetic nanomedicine was selectively delivered to liver cancer cells by FA through receptor-mediated endocytosis. Subsequently, the siRNA cargo was released from the PDA nanomedicine into the tumor microenvironment by controlled release triggered by pH. More importantly, the genetic nanomedicine not only inhibited liver cancer cell proliferation but also promoted liver cell apoptosis by slowing ROC1 activity, suppressing the Neddylation pathway, enabling the accumulation of apototic factor ATF4 and DNA damage factor P-H2AX. Combined with photothermal therapy, this genetic nanomedicine showed superior inhibition of the growth of liver cancer in vitro and in vivo. Taken together, the results indicate that this biodegradable nanomedicine exhibits good target recognition, an effective pH response, application potential for genetic therapy, photothermal imaging and treatment of liver cancer. Therefore, this work contributes to the design of a multifunctional nanoplatform that combines genetic therapy and photothermal therapy for the treatment of liver cancer.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias Hepáticas/metabolismo , Proteína NEDD8/metabolismo , Sistemas de Liberação de Fármacos por Nanopartículas , RNA Interferente Pequeno/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Indóis/química , Masculino , Camundongos , Camundongos Nus , Proteína NEDD8/genética , Nanomedicina , Terapia Fototérmica , Polímeros/química , RNA Interferente Pequeno/genética
14.
Acta Biochim Biophys Sin (Shanghai) ; 53(8): 1027-1036, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34109980

RESUMO

Targeted delivery and smart response of nanomedicine hold great promise for improving the therapeutic efficacy and alleviating the side effects of chemotherapy agents in cancer treatment. However, availability of only a few studies that discuss organic nanomedicines with these properties limits the development prospects of nanomedicines. In the present study, folic acid (FA)-targeted delivery and glutathione (GSH) smart responsive nanomedicine were rationally designed for paclitaxel (PTX) delivery for the treatment of lung cancer. Compared with other stimuli-responsive nanomedicines, this nanocarrier was not only sensitive to biologically relevant GSH for on-demand drug release but also biodegradable into biocompatible products after fulfilling its delivery task. The nanomedicine first entered tumor cells via FA and its receptor-mediated endocytosis. After the lysosomal escape, poly(lactic-co-glycolic acid) (PLGA) nanomedicine was triggered by a higher level of GSH and released its cargo into the tumor microenvironment. In vitro and in vivo results revealed that the PLGA nanomedicine not only inhibited the proliferation and promoted the apoptosis of lung cancer cells significantly but also possessed less toxic side effects when compared with free PTX. Therefore, the proposed drug delivery system demonstrates the potential of a multifunctional nano-platform to enhance bioavailability and reduce the side effects of chemotherapy agents.


Assuntos
Carcinoma Pulmonar de Lewis , Ácido Fólico , Glutationa/metabolismo , Neoplasias Pulmonares , Nanomedicina , Paclitaxel , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Ácido Fólico/química , Ácido Fólico/farmacocinética , Ácido Fólico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia
15.
Int J Mol Sci ; 21(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244800

RESUMO

Fat deposition, which influences pork production, meat quality and growth efficiency, is an economically important trait in pigs. Numerous studies have demonstrated that stearoyl-CoA desaturase (SCD), a key enzyme that catalyzes the conversion of saturated fatty acids into monounsaturated fatty acids, is associated with fatty acid composition in pigs. As SCD was observed to be significantly induced in 3T3-L1 preadipocytes differentiation, we hypothesized that it plays a role in porcine adipocyte differentiation and fat deposition. In this study, we revealed that SCD is highly expressed in adipose tissues from seven-day-old piglets, compared to its expression in tissues from four-month-old adult pigs. Moreover, we found that SCD and lipogenesis-related genes were induced significantly in differentiated porcine adipocytes. Using CRISPR/Cas9 technology, we generated SCD-/- porcine embryonic fibroblasts (PEFs) and found that the loss of SCD led to dramatically decreased transdifferentiation efficiency, as evidenced by the decreased expression of known lipid synthesis-related genes, lower levels of oil red O staining and significantly lower levels of triglyceride content. Our study demonstrates the critical role of SCD expression in porcine adipocyte differentiation and paves the way for identifying it as the promising candidate gene for less fat deposition in pigs.


Assuntos
Adipócitos/enzimologia , Tecido Adiposo/metabolismo , Diferenciação Celular/genética , Genes Essenciais/genética , Estearoil-CoA Dessaturase/genética , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/crescimento & desenvolvimento , Animais , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Lipogênese/genética , Carne , Camundongos , Estearoil-CoA Dessaturase/metabolismo , Suínos , Triglicerídeos/metabolismo
16.
Reproduction ; 157(5): 445-455, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30817314

RESUMO

Compared to ovarian antral follicle development, the mechanism underlying preantral follicle growth has not been well documented. Although C-type natriuretic peptide (CNP) involvement in preantral folliculogenesis has been explored, its detailed role has not been fully defined. Here, we used mouse preantral follicles and granulosa cells (GCs) as a model for investigating the dynamic expression of CNP and natriuretic peptide receptor 2 (NPR2) during preantral folliculogenesis, the regulatory role of oocyte-derived growth factors (ODGFs) in natriuretic peptide type C (Nppc) and Npr2 expression, and the effect of CNP on preantral GC viability. Both mRNA and protein levels of Nppc and Npr2 were gradually activated during preantral folliculogenesis. CNP supplementation in culture medium significantly promoted the growth of in vitro-cultured preantral follicles and enhanced the viability of cultured GCs in a follicle-stimulating hormone (FSH)-independent manner. Using adult and prepubertal mice as an in vivo model, CNP pre-treatment via intraperitoneal injection before conventional superovulation also had a beneficial effect on promoting the ovulation rate. Furthermore, ODGFs enhanced Nppc and Npr2 expression in the in vitro-cultured preantral follicles and GCs. Mechanistic study demonstrated that the regulation of WNT signaling and estrogen synthesis may be implicated in the promoting role of CNP in preantral folliculogenesis. This study not only proves that CNP is a critical regulator of preantral follicle growth, but also provides new insight in understanding the crosstalk between oocytes and somatic cells during early folliculogenesis.


Assuntos
Peptídeo Natriurético Tipo C/farmacologia , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Animais , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/genética , Células Cultivadas , Feminino , Expressão Gênica/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/metabolismo , Oogênese/efeitos dos fármacos , Oogênese/fisiologia , Folículo Ovariano/fisiologia , Ovário/citologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovulação/efeitos dos fármacos , Ovulação/fisiologia , Indução da Ovulação/métodos , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo
17.
Rev Cardiovasc Med ; 20(2): 101-108, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31345003

RESUMO

Hypertension is a universal risk factor for a variety of cardiovascular diseases. Investigation of the mechanism for hypertension will benefit around 40% of the world's adult population. MicroRNA is crucial for the initiation and progression of cardiovascular diseases. In this study, angiotensin II-treated human umbilical vein endothelial cells were used as a model to imitate the pathological changes in endothelial cells under hypertensive conditions. We demonstrated that microRNA-9 (miR-9) suppressed angiotensin II-induced apoptosis and enhanced proliferation in human umbilical vein endothelial cells. Direct interaction between miR-9 and mitochondria associated membrance domain containing glycosylphosphatidylinositol anchor 2 (MDGA2) was determined. Moreover, miR-9 suppressed MDGA2 levels by binding to the 3' UTR site of the MDGA2 gene. This negative regulation of MDGA2 by miR-9 significantly increased proliferation and decreased apoptosis. Re-introduction of MDGA2 in the miR-9 overexpressed human umbilical vein endothelial cells and normalized proliferation, apoptosis, and the cell cycle. In summary, the present study demonstrated miR-9 inhibited expression of MDGA2 leading to the inhibition of apoptosis and promotion of proliferation in angiotensin II-treated human umbilical vein endothelial cells.


Assuntos
Angiotensina II/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas Ligadas por GPI/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , MicroRNAs/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Regiões 3' não Traduzidas , Sítios de Ligação , Células Cultivadas , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , MicroRNAs/genética , Moléculas de Adesão de Célula Nervosa/genética , Transdução de Sinais
18.
Cancer Cell Int ; 19: 21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30718976

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) have been described as a population of cells that may seed metastasis, which is a reliable target for the prevention of metastases in lung cancer patients at the early stage. The culturing of CTCs in vitro can be used to study the mechanism of lung cancer metastasis and to screen antimetastasis drugs. This study aims to establish CTC cell line in vitro and explore the potential mechanism of its metastasis. METHODS: A mixture of EpCAM- and EGFR-coated immunomagnetic microbeads in microfluidic Herringbone-Chip was used to capture CTCs. The CTCs, 95-D and A549 cells was evaluated by cell proliferation assays, clonal formation assays, migration assays and drug resistance. Flow cytometry and cytokine protein chip were used to detect the difference in phenotype and cytokine secretion between CTCs, 95-D and A549 cells. The NOD/SCID mice were used to study tumorigenicity, lung organ colonization and metastasis of CTCs. The H&E staining, immunohistochemistry and immunofluorescence assay were used to detect the pathological status of CTCs. RESULTS: The number of EpCAM(+)/EGFR(+)/CK(+)/CD45(-) lung CTCs showed a weak negative correlation with clinical stages in patients with non-small cell lung cancer (NSCLC). In a phase IIa lung cancer patient, we successfully establish a permanent CTC cell line, named CTC-TJH-01. In vitro studies showed the CTC-TJH-01 cells were in the intermediate stage of epithelial to mesenchymal transition (EMT), had stem cell characteristics and were drug resistant. In vivo studies showed that CTC-TJH-01 cells can induce tumorigenesis, lung organ colonization and metastasis after xenografting in immunodeficient mice. In addition, the low expression level of CX3CL1 and high expression level of CXCL5 in the CTC-TJH-01 cells may be an important mechanism for their metastasis. CONCLUSIONS: We successfully established a permanent CTC cell line with metastatic ability, which can be used to screen antimetastatic drugs and study the mechanism of lung cancer metastasis.

19.
J Pineal Res ; 66(4): e12543, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30584671

RESUMO

Aflatoxin B1 (AFB1) is a major food and feed contaminant that threaten public health. Previous studies indicate that AFB1 exposure disrupted oocyte maturation. However, an effective and feasible method is unavailable for protecting oocytes against toxicity of AFB1. In the present study, using in vitro matured porcine oocytes and parthenogenetic embryos as model, we confirmed that AFB1 exposure during in vitro oocyte maturation (IVM) significantly impaired both nuclear and cytoplasmic maturation in a dose- and time-dependent manner. The different concentrations of melatonin were also tested for their protective effects on oocytes against the AFB1-induced toxicity. Our results showed that supplementation of a relative high concentration of melatonin (10-3 mol/L) during IVM efficiently reversed the impaired development rate and blastocyst quality, to the levels comparable to those of the control group. Further analysis indicated that melatonin application efficiently alleviated reactive oxygen species accumulation and initiation of apoptosis induced by AFB1 exposure. In addition, disrupted GSH/GPX system, as well as inhibited mitochondrial DNA (mtDNA) replication and mitochondrial biogenesis in AFB1-treated oocytes, can be notably reversed by melatonin application. Furthermore, cumulus cells may be important in mediating the toxicity of AFB1 to oocytes, and the metabolism of AFB1 in cumulus cells can be depressed by melatonin. To the best of our knowledge, this is the first report to confirm that melatonin application can efficiently protect oocytes from AFB1-induced toxicity. Our study provides a promising and practical strategy for alleviating or reversing AFB1-induced female reproductive toxicity in both clinical treatment and domestic reproductive management.


Assuntos
Aflatoxina B1/farmacologia , Técnicas de Maturação in Vitro de Oócitos , Melatonina/farmacologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Células do Cúmulo/citologia , Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/metabolismo , Variações do Número de Cópias de DNA/genética , Variações do Número de Cópias de DNA/fisiologia , DNA Mitocondrial/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Marcação In Situ das Extremidades Cortadas , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA