Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835630

RESUMO

In recent years, Fusarium head blight (FHB) has developed into a global disease that seriously affects the yield and quality of wheat. Effective measures to solve this problem include exploring disease-resistant genes and breeding disease-resistant varieties. In this study, we conducted a comparative transcriptome analysis to identify the important genes that are differentially expressed in FHB medium-resistant (Nankang 1) and FHB medium-susceptible (Shannong 102) wheat varieties for various periods after Fusarium graminearum infection using RNA-seq technology. In total, 96,628 differentially expressed genes (DEGs) were identified, 42,767 from Shannong 102 and 53,861 from Nankang 1 (FDR < 0.05 and |log2FC| > 1). Of these, 5754 and 6841 genes were found to be shared among the three time points in Shannong 102 and Nankang 1, respectively. After inoculation for 48 h, the number of upregulated genes in Nankang 1 was significantly lower than that of Shannong 102, but at 96 h, the number of DEGs in Nankang 1 was higher than that in Shannong 102. This indicated that Shannong 102 and Nankang 1 had different defensive responses to F. graminearum in the early stages of infection. By comparing the DEGs, there were 2282 genes shared at the three time points between the two strains. GO and KEGG analyses of these DEGs showed that the following pathways were associated with disease resistance genes: response to stimulus pathway in GO, glutathione metabolism, phenylpropanoid biosynthesis, plant hormone signal transduction, and plant-pathogen interaction in KEGG. Among them, 16 upregulated genes were identified in the plant-pathogen interaction pathway. There were five upregulated genes, TraesCS5A02G439700, TraesCS5B02G442900, TraesCS5B02G443300, TraesCS5B02G443400, and TraesCS5D02G446900, with significantly higher expression levels in Nankang 1 than in Shannong 102, and these genes may have an important role in regulating the resistance of Nankang 1 to F. graminearum infection. The PR proteins they encode are PR protein 1-9, PR protein 1-6, PR protein 1-7, PR protein 1-7, and PR protein 1-like. In addition, the number of DEGs in Nankang 1 was higher than that in Shannong 102 on almost all chromosomes, except chromosomes 1A and 3D, but especially on chromosomes 6B, 4B, 3B, and 5A. These results indicate that gene expression and the genetic background must be considered for FHB resistance in wheat breeding.


Assuntos
Fusarium , Transcriptoma , Resistência à Doença/genética , Fusarium/genética , Perfilação da Expressão Gênica , Genótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
2.
BMC Plant Biol ; 21(1): 311, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210282

RESUMO

BACKGROUND: Mineral elements are important for maintaining good human health besides heavy metals. Mining genes that control mineral elements are paramount for improving their accumulation in the wheat grain. Although previous studies have reported some loci for beneficial trace elements, they have mainly focused on Zn and Fe content. However, little information is available regarding the genetic loci differences in dissecting synchronous accumulation of multiple mineral elements in wheat grains, including beneficial and heavy elements. Therefore, a genome-wide association study (GWAS) was conducted on 205 wheat accessions with 24,355 single nucleotide polymorphisms (SNPs) to identify important loci and candidate genes for controlling Ca, Fe, Zn, Se, Cu, Mn, Cd, As, and Pb accumulation in wheat grains. RESULTS: A total of 101 marker-trait associations (MTAs) (P < 10-5) loci affecting the content of nine mineral elements was identified on chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 3D, 4A, 4B, 5A, 5B, 5D, 6B, 7A, 7B, and 7D. Among these, 17 major MTAs loci for the nine mineral elements were located, and four MTAs loci (P < 10-5) were found on chromosomes 1B, 6B, 7B, and 7D. Eight multi-effect MTAs loci were detected that are responsible for the control of more than one trait, mainly distributed on chromosomes 3B, 7B, and 5A. Furthermore, sixteen candidate genes controlling Ca, Fe, Zn, Se, Cd, and Pb were predicted, whose functions were primarily related to ion binding, including metals, Fe, Ca, Cu, Mg, and Zn, ATP binding, ATPase activity, DNA binding, RNA binding, and protein kinase activity. CONCLUSIONS: Our study indicated the existence of gene interactions among mineral elements based on multi-effect MTAs loci and candidate genes. Meanwhile this study provided new insights into the genetic control of mineral element concentrations, and the important loci and genes identified may contribute to the rapid development of beneficial mineral elements and a reduced content of harmful heavy metals in wheat grain.


Assuntos
Genoma de Planta , Minerais/metabolismo , Estações do Ano , Sementes/genética , Triticum/genética , Alelos , Mapeamento Cromossômico , Loci Gênicos , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Fenótipo
3.
Theor Appl Genet ; 131(5): 1073-1090, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29470622

RESUMO

KEY MESSAGE: Coincident regions on chromosome 4B for GW, on 5A for SD and TSS, and on 3A for SL and GNS were detected through an integration of a linkage analysis and a genome-wide association study (GWAS). In addition, six stable QTL clusters on chromosomes 2D, 3A, 4B, 5A and 6A were identified with high PVE% on a composite map. The panicle traits of wheat, such as grain number per spike and 1000-grain weight, are closely correlated with grain yield. Superior and effective alleles at loci related to panicles developments play a crucial role in the progress of molecular improvement in wheat yield breeding. Here, we revealed several notable allelic variations of seven panicle-related traits through an integration of genome-wide association mapping and a linkage analysis. The linkage analysis was performed using a recombinant inbred line (RIL) population (173 lines of F8:9) with a high-density genetic map constructed with 90K SNP arrays, Diversity Arrays Technology (DArT) and simple sequence repeat (SSR) markers in five environments. Thirty-five additive quantitative trait loci (QTL) were discovered, including eleven stable QTLs on chromosomes 1A, 2D, 4B, 5B, 6B, and 6D. The marker interval between EX_C101685 and RAC875_C27536 on chromosome 4B exhibited pleiotropic effects for GW, SL, GNS, FSN, SSN, and TSS, with the phenotypic variation explained (PVE) ranging from 5.40 to 37.70%. In addition, an association analysis was conducted using a diverse panel of 205 elite wheat lines with a composite map (24,355 SNPs) based on the Illumina Infinium assay in four environments. A total of 73 significant marker-trait associations (MTAs) were detected for panicle traits, which were distributed across all wheat chromosomes except for 4D, 5D, and 6D. Consensus regions between RAC875_C27536_611 and Tdurum_contig4974_355 on chromosome 4B for GW in multiple environments, between QTSS5A.7-43 and BS00021805_51 on 5A for SD and TSS, and between QSD3A.2-164 and RAC875_c17479_359 on 3A for SL and GNS in multiple environments were detected through linkage analysis and a genome-wide association study (GWAS). In addition, six stable QTL clusters on chromosomes 2D, 3A, 4B, 5A, and 6A were identified with high PVE% on a composite map. This study provides potentially valuable information on the dissection of yield-component traits and valuable genetic alleles for molecular-design breeding or functional gene exploration.


Assuntos
Ligação Genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/genética , Mapeamento Cromossômico , Grão Comestível/genética , Estudos de Associação Genética , Desequilíbrio de Ligação , Repetições de Microssatélites , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
Genetica ; 142(4): 371-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25060952

RESUMO

Wheat thousand kernel weight (TKW) is a complex trait, and is largely controlled by several kernel traits, including kernel length (KL) and kernel width (KW). In order to reveal the genetic relationship between TKW and these kernel traits (KW and KL) as accurate as possible, we applied both unconditional and conditional mapping analyses to three distinct genetic populations, one DH population and two RIL populations. This report describes the identifications of 36 unconditional and conditional additive QTLs and 30 pairs of unconditional and conditional epistatic QTLs, all of which are closely associated with TKW. While the conditional additive locus Qtkw1B, detected in the RIL2 population, exhibited the largest contribution, explaining 14.12 % of TKW variance, the unconditional epistatic QTLs Qtkw3A-2/Qtkw5B.1, detected in the DH population, accounted for 11.95 % of phenotypic variance. This study also showed that, compared with unconditional mapping, conditional mapping resulted in very different numbers and different extent of effects of additive and epistatic QTLs that were associated with TKW when TKW was conditioned on kernel traits (KW and KL). These data strongly suggest that KW and KL indeed play a significant role in determining TKW. Furthermore, we demonstrated that the effects of the 25 additive QTLs for TKW were either entirely or largely determined by KW, while the effects of the other 25 additive QTLs for TKW were either entirely or largely affected by KL. We conclude that the conditional mapping can be useful for a better understanding of the interrelationship between the yield contributing traits at the QTL level.


Assuntos
Locos de Características Quantitativas , Sementes/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genótipo , Fenótipo , Polimorfismo Genético , Sementes/anatomia & histologia , Triticum/anatomia & histologia
5.
Int J Biol Macromol ; 271(Pt 1): 132111, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821788

RESUMO

The objective of this study was to understand how the dynamic rheological behaviors of high-amylose wheat (HAW) dough during various heating stages measured using a mixolab were affected by the starch properties. At the heating stage of 30 °C - 90 °C, low minimum (C2) and peak (C3) torques were observed for HAW doughs, which resulted from their reduced starch granule swelling. During holding at 90 °C, HAW doughs had low minimum (C4) and C3 - C4 torques, indicating a good resistance to mechanical shear and endogenous enzyme degradation. HAW doughs also had low final (C5) and setback (C5 - C4) torques, consistent with their low starch swelling power and solubility. The increased amylose in HAW starch formed long-chain double-helical B-type polymorph and amylose-lipid complex, which resulted in high starch gelatinization-temperatures and enthalpy change, low swelling power and solubility, low pasting viscosity, and high resistance of swollen granules to mechanical shear and enzyme degradation. The overall patterns of dough-rheological behavior of HAW doughs during heating were similar to their respective starch pasting profiles, indicating that starch was the dominant contributor to the dough rheology during heating. This study provides useful information for food applications and manufacturing of HAW-based products, especially none-fermented products requiring firm texture and low viscosity.


Assuntos
Amilose , Reologia , Amido , Triticum , Amilose/química , Triticum/química , Amido/química , Viscosidade , Farinha/análise , Solubilidade , Temperatura Alta , Calefação
6.
PeerJ ; 11: e15906, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37750077

RESUMO

Background: Fusarium head blight (FHB) is a disease affecting wheat spikes caused by some Fusarium species and leads to cases of severe yield reduction and seed contamination. Identifying resistance genes/QTLs from wheat germplasm may help to improve FHB resistance in wheat production. Methods: Our study evaluated 205 elite winter wheat cultivars for FHB resistance. A high-density 90K SNP array was used for genotyping the panel. A genome-wide association study (GWAS) from cultivars from three different environments was performed using a mixed linear model (MLM). Results: Sixty-six significant marker-trait associations (MTAs) were identified (P < 0.001) on fifteen chromosomes that explained the phenotypic variation ranging from 5.4 to 11.2%. Some important new MTAs in genomic regions involving FHB resistance were found on chromosomes 2A, 3B, 5B, 6A, and 7B. Six MTAs at 92 cM on chromosome 7B were found in cultivars from two different environments. Moreover, there were 11 MTAs consistently associated with diseased spikelet rate and diseased rachis rate as pleiotropic effect loci and D_contig74317_533 on chromosome 5D was novel for FHB resistance. Eight new candidate genes of FHB resistance were predicated in wheat in this study. Three candidate genes, TraesCS5D02G006700, TraesCS6A02G013600, and TraesCS7B02G370700 on chromosome 5DS, 6AS, and 7BL, respectively, were perhaps important in defending against FHB by regulating intramolecular transferase activity, GTP binding, or chitinase activity in wheat, but further validation in needed. In addition, a total of five favorable alleles associated with wheat FHB resistance were discovered. These results provide important genes/loci for enhancing FHB resistance in wheat breeding by marker-assisted selection.


Assuntos
Conjuntivite Bacteriana , Fusarium , Ceratoconjuntivite , Infecções por Moraxellaceae , Estudo de Associação Genômica Ampla , Triticum/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética
7.
Front Plant Sci ; 14: 1189887, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377808

RESUMO

Protein, starch, and their components are important for wheat grain yield and end-products, which are affected by wheat grain development. Therefore, QTL mapping and a genome-wide association study (GWAS) of grain protein content (GPC), glutenin macropolymer content (GMP), amylopectin content (GApC), and amylose content (GAsC) were performed on wheat grain development at 7, 14, 21, and 28 days after anthesis (DAA) in two environments using a recombinant inbred line (RIL) population of 256 stable lines and a panel of 205 wheat accessions. A total of 29 unconditional QTLs, 13 conditional QTLs, 99 unconditional marker-trait associations (MTAs), and 14 conditional MTAs significantly associated (p < 10-4) with four quality traits were found to be distributed on 15 chromosomes, with the phenotypic variation explained (PVE) ranging from 5.35% to 39.86%. Among these genomic variations, three major QTLs [QGPC3B, QGPC2A, and QGPC(S3|S2)3B] and SNP clusters on the 3A and 6B chromosomes were detected for GPC, and the SNP TA005876-0602 was stably expressed during the three periods in the natural population. The QGMP3B locus was detected five times in three developmental stages in two environments with 5.89%-33.62% PVE, and SNP clusters for GMP content were found on the 3A and 3B chromosomes. For GApC, the QGApC3B.1 locus had the highest PVE of 25.69%, and SNP clusters were found on chromosomes 4A, 4B, 5B, 6B, and 7B. Four major QTLs of GAsC were detected at 21 and 28 DAA. Most interestingly, both QTL mapping and GWAS analysis indicated that four chromosomes (3B, 4A, 6B, and 7A) were mainly involved in the development of protein, GMP, amylopectin, and amylose synthesis. Of these, the wPt-5870-wPt-3620 marker interval on chromosome 3B seemed to be most important because it played an important role in the synthesis of GMP and amylopectin before 7 DAA, in the synthesis of protein and GMP from 14 to 21 DAA, and in the development of GApC and GAsC from 21 to 28 DAA. Using the annotation information of IWGSC Chinese Spring RefSeq v1.1 genome assembly, we predicted 28 and 69 candidate genes for major loci from QTL mapping and GWAS, respectively. Most of them have multiple effects on protein and starch synthesis during grain development. These results provide new insights and information for the potential regulatory network between grain protein and starch synthesis.

8.
Sci Rep ; 12(1): 21010, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471100

RESUMO

Breeding new wheat varieties with salt resistance is one of the best ways to solve a constraint on the sustainability and expansion of wheat cultivation. Therefore, understanding the molecular components or genes related to salt tolerance must contribute to the cultivation of salt-tolerant varieties. The present study used a recombinant inbred line (RIL) population to genetically dissect the effects of different salt stress concentrations on wheat seed germination and seedling traits using two quantitative trait locus (QTL) mapping methods. A total of 31 unconditional and 11 conditional QTLs for salt tolerance were identified on 11 chromosomes explaining phenotypic variation (PVE) ranging from 2.01 to 65.76%. Of these, 15 major QTLs were found accounting for more than 10% PVE. QTL clusters were detected on chromosomes 2A and 3B in the marker intervals 'wPt-8328 and wPt-2087' and 'wPt-666008 and wPt-3620', respectively, involving more than one salt tolerance trait. QRdw3B and QSfw3B.2 were most consistent in two or more salt stress treatments. 16 candidate genes associated with salt tolerance were predicted in wheat. These results could be useful to improve salt tolerance by marker-assisted selection (MAS) and shed new light on understanding the genetic basis of salt tolerance in wheat.


Assuntos
Plântula , Triticum , Triticum/genética , Plântula/genética , Germinação/genética , Melhoramento Vegetal , Sementes , Fenótipo , Tolerância ao Sal/genética
9.
J Genomics ; 10: 8-15, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976226

RESUMO

Wheat (Triticum aestivum L.) flour mixing properties are essential quality parameters in the dough development process. Limited research on superior alleles for mixing properties has restricted their molecular improvement, and other factors related to the complex traits have been ignored. A molecular map of 9576 polymorphic markers in the RIL population (F8:9) (Shannong01-35/Gaocheng9411) was constructed to evaluate mixing property effects in three environments. The parents were selected with markedly distinct high-molecular-weight glutenin subunits (HMW-GS). This study not only evaluated mixing properties using conventional unconditional QTL mapping but also evaluated the relationships between protein-related traits using conditional QTL mapping. The analyses identified most additive QTLs for major mixing properties on chromosomes 1A, 1B, and 1D. Two major loci (1A.1-15 and 1D-1) associated with mixing properties have confirmed the important contributions of Glu-A1 and Glu-D1 to wheat quality at the QTL level, which were mainly affected by the gluten index. Another important locus, 1B.1-24 (associated with midline peak value and midline peak width, with high phenotypic variations explained), might represent a new variation distinct from Glu-B1. The favored alleles came from Gaocheng9411. Several mixing properties shared the same QTLs (1B.1-6 and 1A.1-15), indicating tight linkage or pleiotropism. Genotype-by-environment (G×E) interactions were also investigated in the present study. The QTL results in our study may improve our understanding of the genetic interrelationships between mixing properties and protein-related traits.

10.
Front Plant Sci ; 12: 762605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868158

RESUMO

Fusarium head blight (FHB), a notorious plant disease caused by Fusarium graminearum (F. graminearum), is severely harmful to wheat production, resulting in a decline in grain quality and yield. In order to develop novel control strategies, metabolomics has been increasingly used to characterize more comprehensive profiles of the mechanisms of underlying plant-pathogen interactions. In this research, untargeted and targeted metabolomics were used to analyze the metabolite differences between two wheat varieties, the resistant genotype Sumai 3 and the susceptible genotype Shannong 20, after F. graminearum inoculation. The untargeted metabolomics results showed that differential amino acid metabolic pathways existed in Sumai 3 and Shannong 20 after F. graminearum infection. Additionally, some of the amino acid contents changed greatly in different cultivars when infected with F. graminearum. Exogenous application of amino acids and F. graminearum inoculation assay showed that proline (Pro) and alanine (Ala) increased wheat resistance to FHB, while cysteine (Cys) aggravated the susceptibility. This study provides an initial insight into the metabolite differences of two wheat cultivars under the stress of F. graminearum. Moreover, the method of optimization metabolite extraction presents an effective and feasible strategy to explore the understanding of the mechanisms involved in the FHB resistance.

11.
Sci Rep ; 11(1): 8790, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888831

RESUMO

Flour whiteness and colour are important factors that influence the quality of wheat flour and end-use products. In this study, a genome wide association study focusing on flour and dough sheet colour using a high density genetic map constructed with 90K single nucleotide polymorphism arrays in a panel of 205 elite winter wheat accessions was conducted in two different locations in 2 years. Eighty-six significant marker-trait associations (MTAs) were detected for flour whiteness and the brightness index (L* value), the redness index (a* value), and the yellowness index (b* value) of flour and dough sheets (P < 10-4) on homologous group 1, 2, 5 and 7, and chromosomes 3A, 3B, 4A, 6A and 6B. Four, three, eleven, eleven MTAs for the flour whiteness, L* value, a* value, b* value, and one MTA for the dough sheet L* value were identified in more than one environment. Based on MATs, some important new candidate genes were identified. Of these, two candidate genes, TraesCS5D01G004300 and Gsp-1D, for BS00000020_51 were found in wheat, relating to grain hardness. Other candidate genes were associated with proteins, the fatty acid biosynthetic process, the ketone body biosynthetic process, etc.


Assuntos
Cor , Farinha , Estudo de Associação Genômica Ampla , Triticum/química , Mapeamento Cromossômico , Cromossomos de Plantas , Marcadores Genéticos , Polimorfismo de Nucleotídeo Único , Triticum/genética
12.
Genetica ; 135(3): 257-65, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18500653

RESUMO

Quantitative trait loci (QTLs) with epistatic and QTL x environment (QE) interaction for heading date were studied using a doubled haploid (DH) population containing 168 progeny lines derived from a cross between two elite Chinese wheat cultivars Huapei 3 x Yumai 57 (Triticum aestivum L.). A genetic map was constructed based on 305 marker loci, consisting of 283 SSR loci and 22 EST-SSR markers, which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers in the genome. QTL analyses were performed using a mixed linear model approach. Two main-effect QTLs and two pairs of digenic epistatic effects were detected for heading date on chromosomes 1B, 2B, 5D, 6D, 7A, and 7D at three different environments in 2005 and 2006 cropping seasons. A highly significant QTL with an F-value 148.96, designated as Qhd5D, was observed within the Xbarc320-Xwmc215 interval on chromosome 5DL, accounting for 53.19% of the phenotypic variance and reducing days-to-heading by 2.77 days. The Qhd5D closely links with a PCR marker Xwmc215 with the genetic distance 2.1 cM, which can be used in molecular marker-assisted selection (MAS) in wheat breeding programs. Moreover, the Qhd5D was located on the similar position of well-characterised vernalization sensitivity gene Vrn-D1. We are also spending more efforts to develop near-isogenic lines to finely map the Qhd5D and clone the gene Vrn-D1 through map-based cloning. The Qhd1B with additive effect on heading date has not been reported in previous linkage mapping studies, which might be a photoperiod-sensitive gene homoeologous to the Ppd-H2 gene on chromosome 1B. No main-effect QTLs for heading date were involved in epistatic effects.


Assuntos
Haploidia , Locos de Características Quantitativas , Triticum/genética , Cruzamento , Mapeamento Cromossômico , Cruzamentos Genéticos , Epistasia Genética , Genoma de Planta , Modelos Lineares , Fenótipo
13.
J Integr Plant Biol ; 50(8): 941-50, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18713343

RESUMO

Genetic mapping provides a powerful tool for the analysis of quantitative trait loci (QTLs) at the genomic level. Herein, we report a new genetic linkage map developed from an F(1)-derived doubled haploid (DH) population of 168 lines, which was generated from the cross between two elite Chinese common wheat (Triticum aestivum L.) varieties, Huapei 3 and Yumai 57. The map contained 305 loci, represented by 283 simple sequence repeat (SSR) and 22 expressed sequence tag (EST)-SSR markers, which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers on the map. The chromosomal locations and map positions of 22 new SSR markers were determined, and were found to distribute on 14 linkage groups. Twenty SSR loci showed different chromosomal locations from those reported in other maps. Therefore, this map offers new information on the SSR markers of wheat. This genetic map provides new opportunities to detect and map QTLs controlling agronomically important traits. The unique features of this map are discussed.


Assuntos
Mapeamento Cromossômico , Cruzamentos Genéticos , Haploidia , Triticum/genética , China , Segregação de Cromossomos , Etiquetas de Sequências Expressas , Ligação Genética , Marcadores Genéticos , Repetições Minissatélites/genética
14.
Front Plant Sci ; 8: 2120, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326735

RESUMO

Spike-related traits such as spike length (Sl), fertile spikelet number (Fsn), sterile spikelet number (Ssn), grain number per spike (Gns), and thousand-kernel weight (Tkw) are important factors influencing wheat yield. However, reliably stable markers that can be used for molecular breeding in different environments have not yet been identified. In this study, a double haploid (DH) population was used for quantitative trait locus (QTL) mapping of five spike-related traits under four different nitrogen (N) supply dates in two locations and years. Seventy additive QTLs with phenotypic variation ranging from 4.12 to 34.74% and 10 major epistatic QTLs were identified. Eight important chromosomal regions on five chromosomes (1B, 2B, 2D, 5D, and 6A) were found. Sixteen stable QTLs were detected for which N application had little effect. Among those stable QTLs, QSl.sdau-2D-1, and QSl.sdau-2D-2, with phenotypic variation explained (PVE) of 10.4 and 24.2%, respectively, were flanked by markers Xwmc112 and Xcfd53 in the same order. The QTLs QSsn.sdau-2B-1, QFsn.sdau-2B-1, and QGns.sdau-2B, with PVE ranging from 4.37 to 28.43%, collocated in the Xwmc179-Xbarc373 marker interval. The consistent kernel wheat QTL (QTkw.sdau-6A) on the long arm of chromosome 6A, flanked by SSR markers Xbarc1055 and Xwmc553, showed PVE of 5.87-15.18%. Among these stable QTLs, the two flanking markers Xwmc112 and Xcfd53 have been validated using different varieties and populations for selecting Sl. Therefore, these results will be of great value for marker-assisted selection (MAS) in breeding programs and will accelerate the understanding of the genetic relationships among spike-related traits at the molecular level.

15.
J Genet ; 93(2): 451-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25189240

RESUMO

Complete diallel crosses with five parents of common wheat (Triticum aestivum L.) were conducted to analyse inheritance of 17 amino acid contents by using the genetic model including seed, cytoplasmic, maternal and environment interaction effects on quantitative traits of seeds in cereal crops. The results showed that inheritance of 17 amino acid contents, except tyrosine, was controlled by several genetic systems including seed, cytoplasmic, and maternal effects, and by significant gene x environment interaction effects. Seed-direct additive and maternal effects constituted a major part of genetic effects for lysine, tyrosine, arginine, methionine, and glutamic acid content. Seed-direct additive effect formed main part in inheritance of isoleucine and serine contents. Threonine content was mainly governed by maternal additive effect. The other nine amino acid contents were almost entirely controlled by dominance effects. High general heritability of tyrosine (36.3%), arginine (45.8%), lysine (24.7%) and threonine (21.4%) contents, revealed that it could be effective to improve them by direct selection in progenies from appropriate crosses. Interaction heritability for phenylalanine, proline, and histidine content, which was 36.1%, 39.5% and 25.7%, respectively, was higher than for the other amino acids.


Assuntos
Aminoácidos/genética , Genes de Plantas , Sementes/genética , Triticum/genética , Aminoácidos/metabolismo , Cruzamento , Interação Gene-Ambiente , Estudos de Associação Genética , Variação Genética , Fenótipo , Triticum/metabolismo
16.
J Genomics ; 2: 20-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25057321

RESUMO

Association mapping is an efficient method to test the association between molecular markers and quantitative trait loci (QTL) based on linkage disequilibrium (LD). In this study, 13 agronomic traits of 109 wheat accessions were evaluated at Tai'an of China in 2006-2010. Genetic diversity, population structure, and LD were investigated using Diversity Array Technology (DArT) markers. The extent of LD on B-genome (chromosomes 1B, 2B, 3B, 4B, 5B, 6B and 7B) was about 18-27 cM. The polymorphism information content (PIC) value of markers in the LD blocks was often lower than the mean value of each chromosome. Analysis of the phenotypic diversity of the 13 traits showed that the population structure accounted for an average of 5.82% of the phenotypic variation. Association of 139 DArT markers on chromosome 1B-7B with the 13 traits was analyzed with a mixed linear model. A total of 84 significant marker trait associations (MTAs) were found and some of the associated markers were located in the QTL region detected in previous linkage mapping studies. Combined with hitchhiking effects, we identified five important markers for future analysis, such as wPt-1708(4B, 93.8cM), wPt-3457(5B, 92.3cM), wPt-9613(5B, 94.4cM), wPt-4858(6B, 66.1cM) and wPt-8598(7B, 142.4cM). The information obtained in this study should be useful for marker-assisted selection in wheat breeding programs.

17.
J Genet ; 92(1): 69-79, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23640407

RESUMO

The glutenin and waxy loci of wheat are important determinants of dough quality. This study was conducted to evaluate the effects of high-molecular-weight glutenin (HMW-GS) and waxy alleles on dough-mixing properties. Molecular mapping was used to investigate these effects on Mixograph properties in a population of 290 (Nuomai1 x Gaocheng8901) recombinant inbred lines (RILs) from three environments in the harvest years 2008, 2009 and 2011. The results indicated the following: (i) the Glu-A1 and Glu-D1 loci have greater impacts on Mixograph properties compared to the Wx-1 loci and the effects of Glu-D1d and Glu-D1h on dough mixing are better than those of Glu-D1f and Glu-D1new1 in this population; (ii) the interactions between the Glu-1 and Wx-1 loci affected some traits, especially the midline peak value (MPV), and the lack of Wx-B1 or Wx-D1 led to increased MPV for all types of Glu-1 loci; and (iii) 30 quantitative-trait loci (QTL) over nine wheat chromosomes were identified with ICIM analysis based on the genetic map of 498 loci. Eight major QTL and 16 QTL in the Glu-1 loci from the three environments were found. The major QTL clusters were associated with the Glu-1 loci, and also were found in two regions on chromosome 3B and one region on chromosome 6A, which is one of the novel chromosome regions influencing dough-mixing strength. The two QTL for MPV are located around Wx-B1 on chromosome 4A. QMPT-1D.1, QMPI-1D.1 and Q8MW-1D.1 were stable in different environments and could potentially be used in molecular marker-assisted breeding.


Assuntos
Glutens/genética , Triticum/genética , Alelos , Pão , Mapeamento Cromossômico , Culinária , Farinha , Qualidade dos Alimentos , Genes de Plantas , Glutens/química , Peso Molecular , Subunidades Proteicas/química , Subunidades Proteicas/genética , Locos de Características Quantitativas
18.
J Genet ; 89(4): 409-15, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21273691

RESUMO

Effective tiller number is one of the most important traits for wheat (Triticum aestivum L.) yield, but the inheritance of tillering is poorly understood. A set of 168 doubled haploid (DH) lines derivatives of a cross between two winter wheat cultivars (Huapei 3 and Yumai 57), and an immortalized F(2) (IF(2)) population generated by randomly permutated intermating of these DHs were investigated, and QTLs of tillering related to the maximum tillering of pre-winter (MTW), maximum tillering in spring (MTS), and effective tillering in harvest (ETH) were mapped. Phenotypic data were collected for the two populations from two different environments. Using inclusive composite interval mapping (ICIM), a total of 9 and 18 significant QTL were detected across environments for tillering in the DH and IF(2) populations, respectively. Four QTLs were common between two populations. A major QTL located on the 5D chromosome with the allele originating from Yumai 57 was detected and increased 1.92 and 3.55 tillers in MTW and MTS, respectively. QTLs (QMts6D, QEth6D) having a neighbouring marker interval at Xswes679.1 and Xcfa2129 on chromosome 6D was detected in MTS and ETH. These results provide a better understanding of the genetic factors for selectively expressing the control of tiller number in different growth stages and facilitate marker-assisted selection strategy in breeding.


Assuntos
Mapeamento Cromossômico , Haploidia , Locos de Características Quantitativas , Triticum/crescimento & desenvolvimento , Triticum/genética , Alelos , Cromossomos de Plantas , Produtos Agrícolas/genética , Cruzamentos Genéticos , Marcadores Genéticos , Hibridização Genética , Distribuição Aleatória , Recombinação Genética , Estações do Ano
19.
J Genet ; 88(2): 183-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19700856

RESUMO

Quantitative trait loci (QTLs) for chlorophyll content were studied using a doubled haploid (DH) population with 168 progeny lines, derived from a cross between two elite Chinese wheat cultivars Huapei 3 x Yumai 57. Chlorophyll content was evaluated at the maximum tillering stage (MS), the heading stage (HS), and the grain filling stage (GS), at three different environments in 2005 and 2006 cropping seasons. QTL analyses were performed using a mixed linear model approach. A total of 17 additive QTLs and nine pairs of epistatic QTLs were detected. Ten of 17 additive QTLs for chlorophyll content were persistently expressed at more than two growth stages, which suggest developmentally regulated loci controlling genetics for chlorophyll content in different growth stages in wheat. One novel major QTL for chlorophyll content was closely linked with the PCR marker Xwmc215 and was persistently expressed at three growth stages.


Assuntos
Clorofila/metabolismo , Genes de Plantas , Triticum/metabolismo , Locos de Características Quantitativas , Triticum/genética , Triticum/crescimento & desenvolvimento
20.
J Genet Genomics ; 35(2): 119-27, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18407059

RESUMO

Quantitative trait loci (QTLs) for plant height in wheat (Triticum aestivum L.) were studied using a set of 168 doubled haploid (DH) lines, which were derived from the cross Huapei 3/Yumai 57. A genetic linkage map was constructed using 283 SSR and 22 EST-SSR markers. The DH population and the parents were evaluated for wheat plant height in 2005 and 2006 in Tai'an and 2006 in Suzhou. QTL analyses were performed using the software of QTLNetwork version 2.0 based on the mixed linear model. Four additive QTLs and five pairs of epistatic effects were detected, which were distributed on chromosomes 3A, 4B, 4D, 5A, 6A, 7B, and 7D. Among them, three additive QTLs and three pairs of epistatic QTLs showed QTL x environment interactions (QEs). Two major QTLs, Qph4B and Qph4D, which accounted for 14.51% and 20.22% of the phenotypic variation, were located similar to the reported locations of the dwarfing genes Rht1 and Rht2, respectively. The Qph3A-2 with additive effect was not reported in previous linkage mapping studies. The total QTL effects detected for the plant height explained 85.04% of the phenotypic variation, with additive effects 46.07%, epistatic effects 19.89%, and QEs 19.09%. The results showed that both additive effects and epistatic effects were important genetic bases of wheat plant height, which were subjected to environmental modifications, and caused dramatic changes in phenotypic effects. The information obtained in this study will be useful for manipulating the QTLs for wheat plant height by molecular marker-assisted selection (MAS).


Assuntos
Meio Ambiente , Epistasia Genética , Haploidia , Locos de Características Quantitativas , Triticum/anatomia & histologia , Triticum/genética , Cruzamento , Ligação Genética , Modelos Lineares , Fenótipo , Software , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA