Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Neural Plast ; 2020: 8831735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193754

RESUMO

The spiral ganglion neurons (SGNs) are the primary afferent neurons in the spiral ganglion (SG), while their degeneration or loss would cause sensorineural hearing loss. As a cardiac-derived hormone, atrial natriuretic peptide (ANP) plays a critical role in cardiovascular homeostasis through binding to its functional receptors (NPR-A and NPR-C). ANP and its receptors are widely expressed in the mammalian nervous system where they could be implicated in the regulation of multiple neural functions. Although previous studies have provided direct evidence for the presence of ANP and its functional receptors in the inner ear, their presence within the cochlear SG and their regulatory roles during auditory neurotransmission and development remain largely unknown. Based on our previous findings, we investigated the expression patterns of ANP and its receptors in the cochlear SG and dissociated SGNs and determined the influence of ANP on neurite outgrowth in vitro by using organotypic SG explants and dissociated SGN cultures from postnatal rats. We have demonstrated that ANP and its receptors are expressed in neurons within the cochlear SG of postnatal rat, while ANP may promote neurite outgrowth of SGNs via the NPR-A/cGMP/PKG pathway in a dose-dependent manner. These results indicate that ANP would play a role in normal neuritogenesis of SGN during cochlear development and represents a potential therapeutic candidate to enhance regeneration and regrowth of SGN neurites.


Assuntos
Fator Natriurético Atrial/fisiologia , GMP Cíclico/fisiologia , Neuritos/fisiologia , Gânglio Espiral da Cóclea/fisiologia , Animais , Células Cultivadas , Ratos Sprague-Dawley , Gânglio Espiral da Cóclea/citologia
2.
Int J Immunopathol Pharmacol ; 35: 20587384211034086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34344210

RESUMO

INTRODUCTION: Cruciferous vegetables are a rich source of sulforaphane (SFN), which acts as a natural HDAC inhibitor (HDACi). Our previous study found that HDACi could restore histone acetyltransferase/histone deacetylase (HAT/HDAC) balance in the cochlea and attenuate gentamicin-induced hearing loss in guinea pigs. Here, we investigated the protective effect of SFN on cisplatin-induced hearing loss (CIHL). METHODS: Thirty rats were randomly divided into 3 equal groups: the control group, cisplatin group, and SFN+cisplatin group. Rats were injected with SFN (30 mg/kg once a day) and cisplatin (7 mg/kg twice a day) for 7 days to investigate the protective role of SFN on CIHL. We observed auditory brainstem response (ABR) threshold shifts and immunostained cochlear basilar membranes of rats. For in vitro experiments, we treated HEI-OC1 cells and rat cochlear organotypic cultures with SFN (5, 10, and 15 µM) and cisplatin (10 µM). Immunofluorescence, cell viability, and protein analysis were performed to further analyze the protective mechanism of SFN on CIHL. RESULTS: SFN (30 mg/kg once a day) decreased cisplatin (7 mg/kg twice a day)-induced ABR threshold shifts and outer hair cell loss. CCK-8 assay showed that cisplatin (10 µM) reduced the viability of HEI-OC1 cells to 42%, and SFN had a dose-dependent protective effect. In cochlear organotypic cultures, we found that SFN (10 and 15 µM) increased cisplatin (10 µM)-induced myosin 7a+ cell count and restored ciliary morphology. SFN (5, 10, and 15 µM) reversed the cisplatin (10 µM)-induced increase in HDAC2, -4, and -5 and SFN (15 µM) reversed the cisplatin (10 µM)-induced decrease in H3-Ack9 [acetyl-histone H3 (Lys9)] protein expression in HEI-OC1 cells. Neither cisplatin nor cisplatin combined with SFN affected the expression of HDAC7, or HDAC9. CONCLUSION: SFN prevented disruption of the HAT/HDAC balance, protecting against CIHL in rats.


Assuntos
Antineoplásicos , Cisplatino , Perda Auditiva/induzido quimicamente , Perda Auditiva/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Isotiocianatos/uso terapêutico , Sulfóxidos/uso terapêutico , Animais , Contagem de Células , Cílios/patologia , Cóclea/patologia , Relação Dose-Resposta a Droga , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Células Ciliadas Auditivas Externas/patologia , Histona Desacetilases/biossíntese , Histona Desacetilases/efeitos dos fármacos , Histona Desacetilases/genética , Ratos , Ratos Wistar
3.
Front Microbiol ; 12: 750642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975783

RESUMO

Vibrio alginolyticus, a Gram-negative rod bacterium found in marine environments, is known to cause opportunistic infections in humans, including ear infections, which can be difficult to diagnose. We investigated the microbiological and otopathogenic characteristics of a V. alginolyticus strain isolated from an ear exudate specimen obtained from a patient with chronic otitis externa to provide a basis for the future diagnosis of V. alginolyticus-associated infections. The identification of V. alginolyticus was accomplished using a combination of matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), classical biochemical identification methods, and the use of Vibrio-selective media and advanced molecular identification methodologies. Antimicrobial susceptibility testing revealed that the strain was resistant to ampicillin and sensitive to ß-lactam, aminoglycosides, fluoroquinolones, and sulfonamide antibiotics. The potential otopathogenic effects of V. alginolyticus were determined through the performance of cell viability, cell apoptosis, and cell death assays in tympanic membrane (TM) keratinocytes and HEI-OC1 cells treated with V. alginolyticus-conditioned medium using cell-counting kit (CCK)-8 assay, a wound-healing migration assay, Annexin V/propidium iodide (PI) flow cytometric analysis, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL staining). The results indicated that the identified V. alginolyticus strain exerts cytotoxic effects on keratinocytes and HEI-OC1 cells by inhibiting cell proliferation and migration and inducing apoptosis and cell death. To evaluate the ototoxicity of V. alginolyticus, the cell density and morphological integrity of hair cells (HCs) and spiral ganglion neurons (SGNs) were analyzed after exposing cochlear organotypic explants to the bacterial supernatant, which revealed the pre-dominant susceptibility and vulnerability of HCs and SGNs in the basal cochlear region to the ototoxic insults exerted by V. alginolyticus. Our investigation highlights the challenges associated with the identification and characteristic analysis of the Vibrio strain isolated in this case and ultimately aims to increase the understanding and awareness of clinicians and microbiologists for the improved diagnosis of V. alginolyticus-associated ear infections and the recognition of its potential otopathogenic and ototoxic effects.

4.
Front Cell Dev Biol ; 9: 681421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268307

RESUMO

Sensorineural hearing loss (SNHL) is a dominant public health issue affecting millions of people around the globe, which is correlated with the irreversible deterioration of the hair cells and spiral ganglion neurons (SGNs) within the cochlea. Strategies using bioactive molecules that regulate neurite regeneration and neuronal survival to reestablish connections between auditory epithelium or implanted electrodes and SGN neurites would become attractive therapeutic candidates for SNHL. As an intracellular second messenger, cyclic guanosine-3',5'-monophosphate (cGMP) can be synthesized through activation of particulate guanylate cyclase-coupled natriuretic peptide receptors (NPRs) by natriuretic peptides, which in turn modulates multiple aspects of neuronal functions including neuronal development and neuronal survival. As a cardiac-derived hormone, atrial natriuretic peptide (ANP), and its specific receptors (NPR-A and NPR-C) are broadly expressed in the nervous system where they might be involved in the maintenance of diverse neural functions. Despite former literatures and our reports indicating the existence of ANP and its receptors within the inner ear, particularly in the spiral ganglion, their potential regulatory mechanisms underlying functional properties of auditory neurons are still incompletely understood. Our recently published investigation revealed that ANP could promote the neurite outgrowth of SGNs by activating NPR-A/cGMP/PKG cascade in a dose-dependent manner. In the present research, the influence of ANP and its receptor-mediated downstream signaling pathways on neurite outgrowth, neurite attraction, and neuronal survival of SGNs in vitro was evaluated by employing cultures of organotypic explant and dissociated neuron from postnatal rats. Our data indicated that ANP could support and attract neurite outgrowth of SGNs and possess a high capacity to improve neuronal survival of SGNs against glutamate-induced excitotoxicity by triggering the NPR-A/cGMP/PKG pathway. The neuroregenerative and neuroprotective effects of ANP/NPRA/cGMP/PKG-dependent signaling on SGNs would represent an attractive therapeutic candidate for hearing impairment.

5.
Artigo em Inglês | MEDLINE | ID: mdl-30775696

RESUMO

Outer hair cells (OHCs) damage is a general phenomenon in clinical disorders such as noise-induced hearing loss and drug-induced hearing loss. In order to elucidate the mechanism underlying these disorders, OHCs - its diseased region needs to be deeply investigated. However, OHCs array on the basilar membrane which contains massive cells with different types. Therefore, to isolate OHCs from this huge population is significant for revealing its pathological and molecular changes during disease processing. In the present study, we tried to isolate OHCs from the commonly used animal model -Sprague-Dawley (SD) rats. By separating outer hair cells from SD rats with different day ages, we found that 9 days after birth was a suitable time for the separation of the OHCs. At this time, the number of OHCs isolated from rats was large, and the cell morphology was typical of cylindrical shape. OHCs isolated using this method are histologically suitable and quantitatively adequate for molecular biological and electrophysiological analyses.

6.
Neurosci Lett ; 706: 99-104, 2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31091460

RESUMO

Hearing loss is a common sensory disorder that affects more than 360 million people worldwide, and is primarily caused by the loss of hair cells (HCs). Ototoxic drugs, viral infections, genetic predisposition, aging or noise all damage HCs. 3ß-hydroxysteroid-Δ24 reductase (DHCR24), one enzyme in the cholesterol biosynthetic pathway, is involved in inflammation, oxidative stress and neuroprotection. However, researchers have not determined whether DHCR24 is present in the cochlea and the mechanism by which it exerts its regulatory effect on HC loss. In the present study, we analyzed DHCR24 expression in the postnatal day 1 (P1) rat cochlea and found that DHCR24 was localized in HCs of the organ of Corti. Next, exposure to cisplatin caused HC loss in cochlear organotypic cultures. Then, we inhibited DHCR24 expression with U18666A and observed significantly increased cisplatin-induced damage of cochlear HCs. These findings were consistent with the observed increase in DHCR24 expression in response to cisplatin treatment, and U18666A significantly decreased DHCR24 expression. Finally, DHCR24 inhibition increased the levels of reactive oxygen species and cleaved caspase-3 after cisplatin-induced injury. Collectively, DHCR24 may play a significant role in regulating auditory function and potentially represents a new therapeutic target for the treatment of cisplatin-induced ototoxicity.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Células Ciliadas Auditivas/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Androstenos/farmacologia , Animais , Inibidores Enzimáticos/farmacologia , Células Ciliadas Auditivas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
7.
Mol Med Rep ; 17(4): 6077-6083, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29436610

RESUMO

Cochlear progenitor cells are considered as one of the best candidates for hair cell regeneration, thus, the regulation of cochlear progenitor cell proliferation has become a focus in this field. Several genes expressed in the inner ear during postnatal development have been demonstrated to be involved in maintaining the proliferative potential of progenitor cells, but the mechanism for regulating the proliferation and differentiation of cochlear progenitor cells remains poorly understood. Telomerase reverse transcriptase (TERT) has rate limiting telomerase activity and the overexpression of TERT has been shown to promote cell proliferation in series of cell lines. The aim of the present study was to evaluate the expression of TERT in the postnatal development of the cochlea and progenitor cells. The results demonstrated that TERT was expressed in the basilar membranes during the first postnatal week. In vitro, TERT expression in progenitor cells reached a maximum at day 4 after culture and decreased as the culture time prolonged or the cell passage number increased. These results led us to hypothesize that TERT may be involved in the development of the cochlea and in maintaining the proliferation ability of progenitor cells.


Assuntos
Cóclea/crescimento & desenvolvimento , Cóclea/metabolismo , Regulação da Expressão Gênica , Células-Tronco/metabolismo , Telomerase/genética , Animais , Animais Recém-Nascidos , Membrana Basilar/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Imuno-Histoquímica , Ratos , Células-Tronco/citologia , Telomerase/metabolismo
8.
Neurosci Lett ; 639: 31-35, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28007648

RESUMO

Noise-induced hearing loss (NIHL) is a serious health concern and prevention of hair cell death or therapeutic intervention at the early stage of NIHL is critical to preserve hearing. Minocycline is a semi-synthetic derivative of tetracycline and has been shown to have otoprotective effects in ototoxic drug-induced hearing impairment, however, whether minocycline can protect against NIHL has not been investigated. The present study demonstrated elevated ABR (auditory brainstem response) thresholds and outer hair cell loss following traumatic noise exposure, which was mitigated by intraperitoneal administration of minocycline (45mg/kg/d) for 5 consecutive days. In conclusion, the present study demonstrated that minocycline, a clinically approved drug with a good safety profile, can attenuate NIHL in rats and may potentially be used for treatment of hearing loss in clinic.


Assuntos
Limiar Auditivo/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Minociclina/farmacologia , Animais , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Masculino , Ratos Sprague-Dawley
9.
In Vitro Cell Dev Biol Anim ; 52(5): 537-44, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27083165

RESUMO

The high incidence of hearing loss in human combined with the lack of hair cell regeneration in mammalian cochleae had got the attention to manipulate stem/progenitor cells to participate in hair cell regeneration for years. Cochlear progenitor cells are considered as the best candidate for hair cell regeneration. However, there is not any effective and feasible way to separate hair cell progenitors from rat cochleae, yet. In this study, we tried to isolate single epithelial cells from rat basilar membrane by combinatorial enzymatic digestion with thermolysin and collagenase type I. The results showed that the harvested single cells gave rise to otospheres with features of stem cells and could be induced to differentiate into hair cells. Significantly, more otospheres of epithelial origin were obtained by digesting with thermolysin and collagenase type I. The combinatorial enzymatic digestion would be a potential method for hair cell progenitor isolation and culture with broad applications.


Assuntos
Separação Celular/métodos , Cóclea/citologia , Colagenases/farmacologia , Células Ciliadas Auditivas/citologia , Células-Tronco/citologia , Termolisina/farmacologia , Animais , Membrana Basilar/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Células Epiteliais/citologia , Células Ciliadas Auditivas/efeitos dos fármacos , Ratos Sprague-Dawley , Células-Tronco/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA