Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 243(3): 894-908, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853424

RESUMO

The 'assimilates inhibition hypothesis' posits that accumulation of nonstructural carbohydrates (NSCs) in leaves reduces leaf net photosynthetic rate, thus internally regulating photosynthesis. Experimental work provides equivocal support mostly under controlled conditions without identifying a particular NSC as involved in the regulation. We combined 3-yr in situ leaf gas exchange observations (natural dynamics) in the upper crown of mature Betula pendula simultaneously with measurements of concentrations of sucrose, hexoses (glucose and fructose), and starch, and similar measurements during several one-day shoot girdling (perturbation dynamics). Leaf water potential and water and nitrogen content were measured to account for their possible contribution to photosynthesis regulation. Leaf photosynthetic capacity (A/Ci) was temporally negatively correlated with NSC accumulation under both natural and perturbation states. For developed leaves, leaf hexose concentration explained A/Ci variation better than environmental variables (temperature history and daylength); the opposite was observed for developing leaves. The weaker correlations between NSCs and A/Ci in developing leaves may reflect their strong internal sink strength for carbohydrates. By contrast, the strong decline in photosynthetic capacity with NSCs accumulation in mature leaves, observed most clearly with hexose, and even more tightly with its constituents, provides support for the role of assimilates in regulating photosynthesis under natural conditions.


Assuntos
Betula , Hexoses , Fotossíntese , Folhas de Planta , Estações do Ano , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Betula/fisiologia , Betula/metabolismo , Hexoses/metabolismo , Sequestro de Carbono , Água/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Amido/metabolismo
2.
New Phytol ; 238(1): 142-154, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36636793

RESUMO

Root lodging poses a major threat to maize production, resulting in reduced grain yield and quality, and increased harvest costs. Here, we combined expressional, genetic, and cytological studies to demonstrate a role of ZmYUC2 and ZmYUC4 in regulating gravitropic response of the brace root and lodging resistance in maize. We show that both ZmYUC2 and ZmYUC4 are preferentially expressed in root tips with partially overlapping expression patterns, and the protein products of ZmYUC2 and ZmYUC4 are localized in the cytoplasm and endoplasmic reticulum, respectively. The Zmyuc4 single mutant and Zmyuc2/4 double mutant exhibit enlarged brace root angle compared with the wild-type plants, with larger brace root angle being observed in the Zmyuc2/4 double mutant. Consistently, the brace root tips of the Zmyuc4 single mutant and Zmyuc2/4 double mutant accumulate less auxin and are defective in proper reallocation of auxin in response to gravi-stimuli. Furthermore, we show that the Zmyuc4 single mutant and the Zmyuc2/4 double mutant display obviously enhanced root lodging resistance. Our combined results demonstrate that ZmYUC2- and ZmYUC4-mediated local auxin biosynthesis is required for normal gravity response of the brace roots and provide effective targets for breeding root lodging resistant maize cultivars.


Assuntos
Gravitropismo , Zea mays , Zea mays/metabolismo , Gravitropismo/fisiologia , Raízes de Plantas/metabolismo , Melhoramento Vegetal , Ácidos Indolacéticos/metabolismo
3.
J Pestic Sci ; 43(3): 173-179, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30363134

RESUMO

Strigolactones (SLs) are a series of sesquiterpene lactones that serve as plant hormones to regulate plant growth and development, such as shoot branching, lateral root formation, and root hair elongation. Recently, SLs have been reported to accelerate the leaf senescence, which is also regulated by sugar signals. In this study, we utilized segments of a bamboo leaf to observe leaf senescence and confirmed that SL accelerates leaf senescence and triggers cell death under a dark condition rather than under a light condition. Further studies showed that the co-treatment of sugars suppressed SL-induced leaf senescence and cell death under dark conditions, suggesting a crosstalk between SL and the sugar signal in regulating leaf senescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA