Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Basic Microbiol ; 64(3): e2300365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38012466

RESUMO

The chlamydospores of Duddingtonia flagrans are an essential survival and reproductive structure and also an effective ingredient for the biocontrol of parasitic nematodes in livestock. In this study, entering and exiting dormancy conditions and predatory activity of the fungal chlamydospores were conducted. During this fungal growth process, the cultivation time is negatively correlated with spore germination rates. After the spores were processed by vacuum drying for 168 h, their germination rate dropped to 0.94%. In contrast, the percentage of living spores remained 54.82%, suggesting that the spores entered structural dormancy in the arid environment. Meanwhile, the efficacies of the spore against Haemonchus contortus larvae were 93.05% (0 h), 92.19% (16 h), 92.77% (96 h), and 86.45% (168 h), respectively. After dormant spores were stored at 4°C, -20°C, and 28°C (RH90 ~ 95%) for 7 days, their germination rate began to increase significantly (p < 0.05). For in vitro predation assay under the condition of 28°C (RH90 ~ 95%), the predation rate was significantly higher on the 7th day after incubation than that on the 3rd day (p < 0.05). During the period when spores were stored at room temperature for 8 months, their germination rate decreased in the first 5 months and then increased slowly to reach a peak in the 7th month. However, the reduction rate of H. contortus L3 in feces captured by spores remained above 71% for the first 7 months. These results will help us increase the end products yield and the quality of biological control of parasitic nematodes in livestock.


Assuntos
Ascomicetos , Duddingtonia , Haemonchus , Animais , Comportamento Predatório , Controle Biológico de Vetores/métodos , Haemonchus/microbiologia , Fezes/microbiologia , Esporos Fúngicos , Larva/microbiologia
2.
J Basic Microbiol ; 64(1): 32-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699751

RESUMO

The morphological and structural differences of different types of chlamydospore of Arthrobotrys flagrans, a nematophagous fungus, were studied under light microscope and electron microscope to provide a reference for the biological control of parasitic nematodiasis. In this study, A. flagrans isolate F088 dormant chlamydospore and nondormant chlamydospore were selected as the research objects. The structural differences of these spores were observed by optical microscopy through lactol cotton blue, Trypan blue, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining. FunXite -1, 4',6-diamidino-2-phenylindole, and calcofluor white staining were used to observe the metabolic activity, cell wall, and nucleus differences of the two types of spores under fluorescence microscope. Ultrastructure of the two kinds of spores was observed using scanning electron microscope (SEM) and transmission electron microscope (TEM). Since lacto phenol cotton blue, trypan blue staining cannot distinguish dormant spores from dead spores, MTT assay was performed. Fluorescence microscopy observation showed that the cytoplasmic metabolic activity of nondormant spores was stronger than that of dormant spores. The nucleus of dormant spores was bright blue, and their fluorescence was stronger than that of nondormant spores. The cell wall of nondormant spores produced stronger yellow-green fluorescence than that of dormant spores. Ultrastructural observation showed that there were globular protuberances on the surface of the two types of spores but with no significant difference between them. The inner wall of dormant spore possesses a thick zona pellucida with high electron density which was significantly thicker than that of nondormant spores, and their cytoplasm is also changed. In this study, the microstructure characteristics of dormant and nondormant chlamydospores of A. flagrans fungi were preliminarily clarified, suggesting that the state of cell wall and intracellular materials were changed after spores entered to dormancy.


Assuntos
Ascomicetos , Azul Tripano , Esporos Fúngicos , Fezes/microbiologia , Controle Biológico de Vetores
3.
J Basic Microbiol ; 64(7): e2400008, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548685

RESUMO

Arthrobotrys flagrans, a nematode-eating fungus, is an effective component of animal parasitic nematode biocontrol agents. In the dried formulation, the majority of spores are in an endogenous dormant state. This study focuses on dormant chlamydospore and nondormant chlamydospore of A. flagrans to investigate the differences in cyclic adenosine monophosphate (cAMP) and protein content between the two types of spores. cAMP and soluble proteins were extracted from the nondormant chlamydospore and dormant chlamydospore of two isolates of A. flagrans. The cAMP Direct Immunoassay Kit and Bradford protein concentration assay kit (Coomassie brilliant blue method) were used to detect the cAMP and protein content in two types of spores. Results showed that the content of cAMP in dormant spores of both isolates was significantly higher than that in nondormant spores (p < 0.05). The protein content of dormant spores in DH055 bacteria was significantly higher than that of nondormant spores (p < 0.05). In addition, the protein content of dormant spores of the SDH035 strain was slightly higher than that of nondormant spores, but the difference was not significant (p > 0.05). The results obtained in this study provide evidence for the biochemical mechanism of chlamydospore dormancy or the germination of the nematophagous fungus A. flagrans.


Assuntos
AMP Cíclico , Proteínas Fúngicas , Esporos Fúngicos , Esporos Fúngicos/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , AMP Cíclico/metabolismo , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/química , Ascomicetos/metabolismo , Ascomicetos/isolamento & purificação , Animais , Nematoides/microbiologia
4.
Mol Biol Rep ; 50(9): 7501-7513, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37486443

RESUMO

BACKGROUND: NF-κB activating protein (NKAP) acts as a transcriptional suppressor in the Notch signaling pathway, It plays a role in hematopoiesis maintenance, immune cell development, maturation, and functional competency acquisition. NKAP has been found to act as an oncogene in many tumors, but it has not been reported in PAAD.The purpose of this study was to investigate the effect of NKAP on the growth and metastasis of pancreatic adenocarcinoma(PAAD). METHODS AND RESULTS: In this study, western blot and qRT-PCR showed that highly expressed NKAP was found in PAAD cell lines, and small interfering RNA (siRNA) was employed to reduce the expression of NKAP in PAAD cell lines. The results of CCK-8, clony formation, Transwell and flow cytometry showed that knockdown of NKAP significantly inhibited biological function of PAAD cells, and increased cell apoptosis. Study also observed that knockdown of NKAP inhibited the expression levels of apoptosis proteins and cyclin in PAAD cells. In addition, mTOR's degree of phosphorylation and the expression of its downstream target p70S6K can both be activated by NKAP. This effect was also confirmed in salvage experiments performed with Rapamycin(RaPa), an inhibitor of mTOR. At the end of the experiment, It was investigated how NKAP affected the drug sensitivity of gemcitabine used to treat PAAD. The results showed that knocking down NKAP could increase the drug sensitivity of gemcitabine. CONCLUSIONS: NKAP as an oncogene regulates the development of PAAD cells. The research found that the mTOR signaling pathway is engaged in the oncogenic role of NKAP in PAAD for the first time.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Gencitabina , NF-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Repressoras/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Pancreáticas
5.
Mol Biol Rep ; 50(1): 185-192, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36319787

RESUMO

BACKGROUND: Proliferation of embryonic fibroblasts under the same cell culture conditions, hinny embryonic fibroblasts (HiEFs) was slower than horse embryonic fibroblast (HEFs), donkey embryonic fibroblasts (DEFs) and mule embryonic fibroblasts (MuEFs). The imprinted genes IGF2 and IGF2R are important for cell proliferation. Therefore, we investigated whether the slower proliferation of HiEFs is related to an aberrant gene expression of IGF2 or its receptors or genes influencing the expression of the IGF2 system. METHODS AND RESULTS: Real-time polymerase chain reaction, immunofluorescence and cell starving experiment in HEFs, DEFs, MuEFs and HiEFs revealed that the slower proliferation of HiEF in vitro was related to its lower expression of IGF2R (P < 0.001). Moreover, quantification of allele-specific expression and bisulfate assay confirmed that in both MuEFs and HiEFs, IGF2R had normal maternal imprinting, implying that the imprint aberrant was not involved in the lower IGF2R expression in HiEFs. CONCLUSIONS: The reduction of IGF2R expression in HiEFs is associated with its slower proliferation in vitro.


Assuntos
Impressão Genômica , Receptor IGF Tipo 2 , Animais , Cavalos/genética , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Alelos , Proliferação de Células/genética , Equidae/genética , Equidae/metabolismo , Fibroblastos/metabolismo , Metilação de DNA
6.
J Cancer ; 15(12): 3913-3929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911386

RESUMO

Background: Thioredoxin domain-containing protein 12 (TXNDC12) is upregulated in a variety of tumours, including pancreatic cancer (PAAD), and its high expression is closely associated with poor prognosis. However, the regulatory mechanism of TXNDC12 in PAAD has not been reported. The aim of this study is to reveal the precise mechanism of TXNDC12 in regulating PAAD progression. Methods: The expression of TXNDC12 in pan-cancer as well as PAAD was verified by TCGA and GTEx databases, Western blot and RT-qPCR. CCK8 assay, clone formation assay and cell cycle assay were used to observe the effect of TXNDC12 on the proliferation of PAAD cells, the migration and invasion capacities were verified by wound healing assay and Transwell assay. The effect of TXNDC12 on apoptosis of MIA PaCa-2 and PANC-1 cells was detected using Hochest and flow cytometry. Finally, the interaction of TXNDC12 with GGT7 was predicted by STRING database and confirmed by CO-IP assay, the effect of TXNDC12 on ferroptosis through GGT7 was evaluated by GSH assay, MDA assay, ROS assay and Western blot. Results: TXNDC12 is upregulated in PAAD tissues, and patients with high TXNDC12 levels generally have shorter survival times. Knockdown of TXNDC12 significantly inhibited the proliferation, migration and invasion and promoted apoptosis of MIA PaCa-2 and PANC-1 cells. Mechanistically, knockdown of TXNDC12 resulted in a decrease in intracellular GSH content and an increase in GSSG content, as well as elevated levels of pro-ferroptosis factors, such as MDA and ROS. STRING database predicted that TXNDC12 interacts with GGT7, and CO-IP assay was used to validate this result. Finally, the effect of knocking down TXNDC12 on pancreatic cancer cell functions was able to be reversed by overexpression of GGT7. Conclusion: TXNDC12 inhibits ferroptosis in PAAD cells through the GSH/GGT7 axis thereby promoting their development.

7.
Front Cell Dev Biol ; 10: 958205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990610

RESUMO

During equine early gestation, trophectoderm forms chorion tissue, which is composed of two parts that one is covering allantoin, called allantochorion (AC) and another is covering yolk sac, which here we call vitelline-chorion (VC). Given that little is known about the equine trophoblast-derived chorion differentiation at an early stage, we first compared the transcriptome of AC and VC of day 30 equine conceptus based on RNA-sequencing. As a result, we found that compared to VC, there are 484 DEGs, including 305 up- and 179 down-regulated genes in AC. GO and KEGG analysis indicated that up-regulated genes in AC are mainly cell proliferation and cell adhesion-related genes, participating in allantois expansion and allantochorionic-placenta formation; dominant genes in VC are extracellular exosome and other cell adhesion-related genes implicated in direct and indirect conceptus-maternal communication. Additionally, as for the progenitor chorion tissue of equine chorionic gonadotropin secreting endometrium cup-the chorionic girdle (CG), which locates at the junction of the dilating AC and regressing VC, we revealed its unique gene expression pattern and the gene regulation during its further differentiation in vitro. Collectively, this study sheds light on the molecular events regarding the trophoblast differentiation and function at an early stage of the equine preimplantation conceptus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA