RESUMO
Based on the androgen receptor(AR)/mammalian target of rapamycin(mTOR)signaling pathway, the effects of Xihuang Pills-medicated serum on the proliferation and apoptosis of prostate cancer LNCaP cells were investigated. The drug-containing serum of SD rats was prepared by intragastric administration of Xihuang Pills suspension. The effects of low-, medium-, and high-dose Xihuang Pills-containing serum on the in vitro proliferation of LNCaP cells were detected by cell counting kit-8(CCK-8). Flow cytometry was used to detect the apoptosis level of LNCaP cells after intervention with different concentrations of Xihuang Pills. Protein expression of cleaved cysteinyl aspartate-specific proteinase caspase-3(cleaved caspase-3), B-cell lymphoma-2(Bcl-2), and AR as well as the phosphorylation level of mTOR protein were detected by Western blot. The results showed that compared with the blank serum, the drug-medicated serum could blunt the activity of LNCaP cells. Low-, medium-, and high-dose Xihuang Pills-containing serum could significantly increase the cell apoptosis rate, increase the expression of cleaved caspase-3 protein, decrease the expression of Bcl-2 protein, reduce the expression of AR protein, and down-regulate the level of phosphorylated mTOR(p-mTOR). To study the effect of Xihuang Pills on the growth of LNCaP cells in vivo, different doses of Xihuang Pills were used to intervene in the subcutaneous graft model in nude mice inoculated with LNCaP cells. The expression levels of AR, mTOR, p-mTOR, Bcl-2, and cleaved caspase-3 were detected by Western blot. The results showed that the volumes of subcutaneous graft tumor in the low-dose, medium-dose, and high-dose Xihuang Pills groups significantly decreased compared with that in the model group. The weight of subcutaneous transplanted tumor in each group with drug intervention was significantly lower than that in the model group. Compared with the model group, the low-dose, medium-dose, and high-dose Xihuang Pills groups showed increased cleaved caspase-3 protein expression, decreased Bcl-2 and AR protein expression, and reduced p-mTOR protein expression. Further experiments showed that AR agonist R1881 could block the anti-proliferation and pro-apoptotic effects of Xihuang Pills. The mechanism of Xihuang Pills against prostate cancer is related to the inhibition of the AR/mTOR signaling pathway, inhibition of LNCaP cell proliferation, and induction of apoptosis in cancer cells.
Assuntos
Neoplasias da Próstata , Transdução de Sinais , Humanos , Masculino , Camundongos , Ratos , Animais , Caspase 3/genética , Caspase 3/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proliferação de Células , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Mamíferos/metabolismoRESUMO
OBJECTIVE: To evaluate the effects of Xihuang Pills (XHP) and its main components on PI3K, AKT and mTOR signaling pathways and cell apoptosis of castration-resistant human PCa PC-3 cell subcutaneously transplanted tumors in nude mice. METHODS: We assigned 36 PC-3 tumor-bearing model mice to six groups of equal numbers to be treated with XHP, musk, calculus bovis (CB), musk + CB and docetaxel, respectively. After 14 days of intervention, we calculated the tumor-inhibition rate in different groups, observed the morphology of the tumor cells by HE staining, determined the levels of PI3K, Akt and mTOR mRNA by RT-qPCR, and determined the expressions of PI3K, Akt and mTOR signaling pathways and caspase-3 and caspase-9 proteins by Western blot. RESULTS: After 14 days of medication, the tumor-inhibition rates in the XHP, musk, CB, musk + CB and docetaxel groups were 29.67%, 5.52%, 7.26%, 12.88% and 6.26%, respectively. HE staining showed the formation of apoptotic bodies in the tumor tissues after intervention, especially in the XHP and musk + CB groups. The mRNA and phosphorylated protein expressions of PI3K, Akt and mTOR were significantly down-regulated (P < 0.01), and so were the expressions of caspase-3 and caspase-9 proteins in the XHP and musk + CB groups in comparison with the control (P < 0.01). CONCLUSIONS: Xihuang Pills, musk and calculus bovis can inhibit the growth of castration-resistant human PCa PC-3 cell subcutaneously transplanted tumors, which is associated with their effects of suppressing the abnormally activated PI3K, Akt and mTOR signaling pathways and promoting the apoptosis of PCa PC3 cells.
Assuntos
Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias da Próstata , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Masculino , Camundongos , Camundongos Nus , Células PC-3 , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
OBJECTIVE: To analyze the epidemiological characteristics of PCa in the Changsha area of Hunan Province and provide some reference for the formulation of the strategies for the prevention and control of the malignancy. METHODS: We collected the data on the age, pathological type and TCM syndrome type of 2 877 PCa patients diagnosed and treated in Xiangya Hospital of Central South University, the First Affiliated Hospital of Hunan University of Chinese Medicine and the Affiliated Hospital of Hunan Research Institute of Chinese Medicine from January 1, 2010 to December 31, 2019. We analyzed the data obtained and the current prevalence and epidemiological trend of PCa. RESULTS: Of the total number of cases of PCa diagnosed and treated, there were 291 in 2010, 315 in 2011, 213 in 2012, 220 in 2013, 159 in 2014, 226 in 2015, 199 in 2016, 180 in 2017, 577 in 2018 and 497 in 2019. The age-related incidence rate was the lowest in the <40-year-olds (1.77%) and the highest in the 65- to 79-year-olds (18.4%). The incidence rate was increased year by year in the 65- to 79-year-olds, elevated to 63.9% in the 10 years, and most significantly in the ≥80-year-olds, soaring to 97.9% in the 10 years. As for the pathological types, prostatic adenocarcinoma (PAC) accounted for 50.1% (n = 1 441), acinar cell PAC 7.0% (n = 201), follicular PAC 1.29% (n = 37), ductal PCa 0.94% (n = 27), non-specific PCa 9.49% (n = 273), and other PACs 5.77% (n = 166). TCM syndrome differentiation was performed for 157 cases, which revealed kidney-yin deficiency in 40 cases (25.5%) and kidney-yang deficiency in 69 cases (43.9%). CONCLUSIONS: The incidence of PCa from 2010 to 2019 showed an aging-related trend in the Changsha area of Hunan Province, the highest among 65- to 69-year-olds. Males aged 65ï¼79 years are a high-risk population for PCa, which calls for strengthened health education, early diagnosis and early treatment.
Assuntos
Neoplasias da Próstata , Deficiência da Energia Yang , Deficiência da Energia Yin , Adulto , Idoso , China/epidemiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/epidemiologia , Fatores de RiscoRESUMO
OBJECTIVE: To study the effects of muskîolibanum combination on the proliferation and differentiation of prostate stem cells. METHODS: We cultured prostate epithelial cells and urogenital sinus mesenchymal (UGSM) cells from 7ï¼10 d old C57BL/6 mice and 16ï¼18 d old pregnant C57BL/6 mice, transplanted the mixed suspension of the two types of cells under the kidney envelope of SCIDCB.17 male mice, and harvested the transplants 30 days later. We randomly divided the SCIDCB.17 mice into four groups to be treated intragastrically with musk (n = 8), olibanum (n = 8), musk+olibanum (n = 7), and normal saline (blank control, n = 8)) respectively, all for 14 days. Then we collected the kidney tissue for observation of the morphology of the glandular tubes and differentiation of different subsets of stem cells by HE staining and determination of the expressions and distribution of P63, CD133, CD117 and Scaî1 by immunohistochemistry and Western blot. RESULTS: A system was successfully established for the isolation and mixed culture of Scaî1 Linî+ CD49f+ (LSC) cells of prostate stem cells and UGSM cells of the mouse embryonic prostate. Immunohistochemistry showed positive expressions of P63, CD133, Scaî1, and CD117 in the prostatic acinar epithelia and proved the presence of prostatic acinar epithelial structure in the transplants. Compared with the blank control group, the expressions of CD133, Scaî1 and CD117 were significantly increased in the musk, olibanum, and musk+olibanum groups (P< 0.05), higher in the musk+olibanum than in the musk or olibanum group (P< 0.05), and their protein expressions were even more elevated in the musk+olibanum group (P< 0.01), with statistically significant difference from the olibanum group (P< 0.05). CONCLUSIONS: The combination of musk and olibanum can improve the proliferation and differentiation of prostate stem cells.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Franquincenso/farmacologia , Próstata/citologia , Células-Tronco/efeitos dos fármacos , Animais , Quimioterapia Combinada , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Feminino , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Gravidez , Distribuição Aleatória , Receptores Proteína Tirosina Quinases , Receptores Colinérgicos , Células-Tronco/citologiaRESUMO
OBJECTIVE: To investigate the effects of the combination of musk and olibanum on the tight junction protein expressions in prostatic epithelial cells of normal and chronic prostatitis (CP) rats. METHODS: Eighty male SD rats were randomly divided into 8 groups of equal number: normal control, normal musk, normal olibanum, normal musk + olibanum, CP model control, CP model musk, CP model olibanum, and CP model musk + olibanum. At 60 days after modeling, the rats in the control, musk, olibanum, and musk + olibanum groups were treated intragastrically with normal saline, musk (0.021 g per kg body weight per day), olibanum (1.05 g per kg body weight per day), or musk + olibanum respectively, all for 3 days. Then, all the rats were sacrificed and their prostate tissues harvested for detection of the expressions of the tight junction proteins Claudin-1, Claudin-3, Occludin, and ZO-1 in the prostatic epithelial cells by immunohistochemical staining. RESULTS: In the CP models, only the expression of Claudin-1 was significantly increased. In the normal rats, the expression of Claudin-1 was remarkably upregulated after treated with musk (824.6 ± 393.3, P < 0.05), olibanum (982.0 ± 334.0, P < 0.05), and musk + olibanum (1088.1 ± 640.2, P < 0.01); that of Claudin-3 was elevated markedly by olibanum (1 009.5 ± 243.6, P < 0.05) and insignificantly by musk (597.5 ± 80.7), but the increasing effect of olibanum was reduced by musk + olibanum (678.4 ± 255.1). No statistically significant differences were found in the expression of Occludin among the rats treated with musk (693.0 ± 424.8), olibanum (732.1 ± 302.0), and musk + olibanum (560.2 ± 202.3), or in that of ZO-1 in the animals treated with musk (290.0 ± 166.8) and olibanum (419.7 ± 108.1), but the latter was markedly decreased in the musk + olibanum group (197.7 ± 98.2, P < 0.05). In the CP rat models, both the expressions of Claudin-1 (823.0 ± 100.1, P < 0.01) and Occludin (1160.0 ± 32.2, P < 0.05) were significantly increased. The expression of Claudin-1 was remarkably down-regulated by musk (764.9 ± 179.0), olibanum (468.4 ± 220.4), and musk + olibanum (335.1 ± 204.0) (all P < 0.05), but that of Claudin-3 up-regulated by musk (744.6 ± 94.5) and olibanum (700.1 ± 223.7) (both P < 0.05). The expression of Occludin was reduced by musk (615.0 ± 221.0), olibanum (749.6 ± 321.7), and musk + olibanum (505.8 ± 523.7), while that of ZO-1 increased by olibaum (443.2 ± 44.9) and decreased by musk + olibanum (213.5 ± 24.9, P < 0.05). CONCLUSION: In physiological and pathological conditions, the combination of musk and olibanum acts on the expressions of tight junction proteins in prostate epithelial cells in a selective and dual-targeting manner, promoting their permeability by down-regulating the expression of ZO-1 and maintaining their structural stability by regulating the expressions of Claudin-1, Claudin-3, and Occludin.
Assuntos
Células Epiteliais/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/química , Franquincenso/química , Próstata/citologia , Proteínas de Junções Íntimas/metabolismo , Animais , Claudinas/metabolismo , Regulação para Baixo , Masculino , Ocludina/metabolismo , Prostatite , Ratos , Ratos Sprague-Dawley , Regulação para CimaRESUMO
OBJECTIVE: To study the effects of drug plasma of musk and olibanum (DP-M&O) on the release of inflammatory cytokines from monocytes and the expressions of the proteins associated with inflammation of prostatic or endothelial cells induced by prostate antigen (PAg) stimulation. METHODS: We prepared DP-M&O using SD rats and monocytes and PAgs using BALB/c mice. We pre-treated the monocytes with DP-M&O at the gradient concentrations of 0, 2.5, 5, 10, and 20% for 1 hour, activated them with PAgs, and then cultured them for 96 hours, followed by detection of the release of inflammatory cytokines. We co-cultured the prostate RWPE-1 cells with the endothelial EA. hy926 cells, pre-treated them with the same gradient concentrations of DP-M&O as above for 1 hour, activated with PAgs, and cultured for 96 hours. Then we determined the expression levels of the proteins associated with inflammation of RWPE-1 and EA. hy926 cells by Western blot. RESULTS: DP-M&O decreased the levels of TNF-alpha, IL-1beta, IL-6, and IL-8 and increased that of IL-10 in a concentration-dependent manner. Significant differences were found between the 20% P-M&O and PAg groups in the release of the inflammatory cytokines TNF-alpha (70.8 +/- 22.3 vs. 277.1 +/- 65.5, P < 0.01) , IL-113 (277.5 +/- 22.6 vs. 630.4 +/- 89.7, P <0.01), IL-6 (232.7 +/- 62.7 vs. 994.2 vs. 182.3, P < 0.01), IL-8 (227.3 +/- 79.2 vs. 769.3 +/- 284.1, P < 0.01), and IL-10 (640.2 +/- 201.2 vs. 271.1 +/- 55.8, P < 0.01). Compared with the PAg group, the 10 and 20% P-M&O groups showed remarkable decreases in the protein expression of MCP-1/CCL2 in the RWPE-1 cells (1.12 +/- 0.34 vs. 0.56 +/- 0.11 and 0.34 +/- 0.08) and that of VCAM-1 in the EA. hy926 cells (0.94 +/- 0.22 vs. 0.52 +/- 0.17 and 0.38 +/- 0.12) (P < 0.05 or 0.01). CONCLUSION: The compatibility of musk and olibanum can decrease the expression of MCP-1/CCL2 in prostate cells and VCAM-1 in vascular endothelial cells, blocking the adhesion of leucocytes and suppressing inflammatory response.
Assuntos
Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Franquincenso/farmacologia , Monócitos/efeitos dos fármacos , Próstata/citologia , Animais , Western Blotting , Células Endoteliais/metabolismo , Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismoRESUMO
Anlotinib is used for the treatment of advanced non-small cell lung cancer; however, the emergence of drug resistance limits its clinical application. ß-sitosterol may also be used to treat lung cancer, but there have been no studies evaluating ß-sitosterol against anlotinib-resistant lung cancer. The purpose of this study was to determine the mechanism by which ß-sitosterol enhances the sensitivity of lung cancer cells to anlotinib. A549 cells were treated with different concentrations of anlotinib to generate anlotinib-resistant cells (A549/anlotinib cells). miR-181a-3p mimics were transfected into A549/anlotinib cells. A549 and A549/anlotinib cells were treated with ß-sitosterol at various concentrations. The Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. Apoptosis was assessed by flow cytometry. Real-time quantitative PCR was used to measure the expression of miR-181a-3p. The interaction of miR-181a-3p with the H/ACA ribonucleoprotein assembly factor (SHQ1) was predicted using the miRDB and TargetScan Human databases and verified with a luciferase reporter assay. The expression of SHQ1, activating transcription factor 6 (ATF6), and glucose-regulated protein 78 (GRP78) were measured by western blot analysis. ß-Sitosterol effectively suppressed A549/anlotinib cell proliferation and promoted apoptosis. SHQ1 is a downstream target of miR-181a-3p. The expression of miR-181a-3p was inhibited; however, SHQ1 expression was increased by ß-sitosterol treatment of A549/anlotinib cells. The inhibition of SHQ1, ATF6, and GRP78 protein expression by ß-sitosterol in A549/anlotinib cells was rescued by increased miR-181a-3p. ß-Sitosterol markedly promotes anlotinib-resistant A549 cell apoptosis and inhibits cell proliferation by activating SHQ1/UPR signaling through miR-181a-3p inhibition.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , MicroRNAs , Quinolinas , Sitosteroides , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Chaperona BiP do Retículo Endoplasmático , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacosRESUMO
OBJECTIVE: To investigate the mechanism of induction of ferroptosis by brazilin in breast cancer cells. METHODS: Breast cancer 4T1 cells were divided into 6 groups: control, brazilin 1/2 half maximal inhibitory concentration (IC50), IC50, 2×IC50, erastin (10 µg/mL) and capecitabine (10 µg/mL) groups. The effect of brazilin on the proliferation of 4T1 cells was detected by cell counting kit-8 assay, and the treatment dose of brazilin was screened. The effect of brazilin on the mitochondrial morphology of 4T1 cells, and the mitochondrial damage was evaluated under electron microscopy. The levels of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and glutathione peroxidase 4 (GPX4) were estimated using various detection kits. The invasion and migration abilities of 4T1 cells were detected by scratch assay and transwell assay. The expressions levels of tumor protein p53, solute carrier family 7 member 11 (SLC7A11), GPX4 and acyl-CoA synthetase long-chain family member 4 (ACSL4) proteins were quantified by Western blot assay. RESULTS: Compared to the control group, the 10 (1/2 IC50), 20 (IC50) and 40 (2×IC50) µg/mL brazilin, erastin, and capecitabine groups showed a significant decrease in the cell survival rate, invasion and migration abilities, GSH, SLC7A11 and GPX4 protein expression levels, and mitochondrial volume and ridge (P<0.05), and a significant increase in the mitochondria membrane density, Fe2+, ROS and MDA levels, and p53 and ACSL4 protein expression levels (P<0.05). CONCLUSIONS: Brazilin actuated ferroptosis in breast cancer cells, and the underlying mechanism is mainly associated with the p53/SLC7A11/GPX4 signaling pathway.
Assuntos
Sistema y+ de Transporte de Aminoácidos , Neoplasias da Mama , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Proteína Supressora de Tumor p53 , Ferroptose/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Feminino , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Coenzima A Ligases/metabolismo , Movimento Celular/efeitos dos fármacos , BenzopiranosRESUMO
BACKGROUND: Dysphoria and despondency are prevalent psychological issues in patients undergoing Maintenance Hemodialysis (MHD) that significantly affect their quality of life (QOL). High levels of social support can significantly improve the physical and mental well-being of patients undergoing MHD. Currently, there is limited research on how social support mediates the relationship between dysphoria, despondency, and overall QOL in patients undergoing MHD. It is imperative to investigate this mediating effect to mitigate dysphoria and despondency in patients undergoing MHD, ultimately enhancing their overall QOL. AIM: To investigate the mediating role of social support in relationships between dysphoria, despondency, and QOL among patients undergoing MHD. METHODS: Participants comprised 289 patients undergoing MHD, who were selected using a random sampling approach. The Social Support Rating Scale, Self-Rating Anxiety Scale, Self-Rating Depression Scale, and QOL Scale were administered. Correlation analysis was performed to examine the associations between social support, dysphoria, despondency, and QOL in patients undergoing MHD. To assess the mediating impact of social support on dysphoria, despondency, and QOL in patients undergoing MHD, a bootstrap method was applied. RESULTS: Significant correlations among social support, dysphoria, despondency, and quality in patients undergoing MHD were observed (all P < 0.01). Dysphoria and despondency negatively correlated with social support and QOL (P < 0.01). Dysphoria and despondency had negative predictive impacts on the QOL of patients undergoing MHD (P < 0.05). The direct effect of dysphoria on QOL was statistically significant (P < 0.05). Social support mediated the relationship between dysphoria and QOL, and this mediating effect was significant (P < 0.05). Similarly, the direct effect of despondency on QOL was significant (P < 0.05). Moreover, social support played a mediating role between despondency and QOL, with a significant mediating effect (P < 0.05). CONCLUSION: These findings suggest that social support plays a significant mediating role in the relationship between dysphoria, despondency, and QOL in patients undergoing MHD.
RESUMO
The discovery of novel antitumor agents derived from natural plants is a principal objective of anticancer drug research. Frankincense, a widely recognized natural antitumor medicine, has undergone a systematic review encompassing its species, chemical constituents, and diverse pharmacological activities and mechanisms. The different species of frankincense include Boswellia serrata, Somali frankincense, Boswellia frereana, and Boswellia arabica. Various frankincense extracts and compounds exhibit antitumor, anti-inflammatory, and hepatoprotective properties and antioxidation, memory enhancement, and immunological regulation capabilities. They also have comprehensive effects on regulating flora. Frankincense and its principal chemical constituents have demonstrated promising chemoprophylactic and therapeutic abilities against tumors. This review provides a systematic summary of the mechanism of action underlying the antitumor effects of frankincense and its major constituents, thus laying the foundations for developing effective tumor-combating targets.
Assuntos
Franquincenso , Humanos , Franquincenso/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/químicaRESUMO
BACKGROUND: Calculus bovis (CB), used in traditional Chinese medicine, exhibits anti-tumor effects in various cancer models. It also constitutes an integral component of a compound formulation known as Pien Tze Huang, which is indicated for the treatment of liver cancer. However, its impact on the liver cancer tumor microenvironment, particularly on tumor-associated macrophages (TAMs), is not well understood. AIM: To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/ß-catenin pathway modulation. METHODS: This study identified the active components of CB using UPLC-Q-TOF-MS, evaluated its anti-neoplastic effects in a nude mouse model, and elucidated the underlying mechanisms via network pharmacology, transcriptomics, and molecular docking. In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs, and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis. RESULTS: This study identified 22 active components in CB, 11 of which were detected in the bloodstream. Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth. An integrated approach employing network pharmacology, transcriptomics, and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization. In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/ß-catenin pathway activation. The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001, confirming its pathway specificity. CONCLUSION: This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/ß-catenin pathway, contributing to the suppression of liver cancer growth.
Assuntos
Neoplasias Hepáticas , Camundongos Nus , Simulação de Acoplamento Molecular , Microambiente Tumoral , Macrófagos Associados a Tumor , Via de Sinalização Wnt , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Humanos , Camundongos , Células Hep G2 , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Masculino , Farmacologia em Rede , beta Catenina/metabolismo , Medicina Tradicional Chinesa/métodosRESUMO
BACKGROUND: Centipedes have been used to treat tumors for hundreds of years in China. However, current studies focus on antimicrobial and anticoagulation agents rather than tumors. The molecular identities of antihepatoma bioactive components in centipedes have not yet been extensively investigated. It is a challenge to isolate and characterize the effective components of centipedes due to limited peptide purification technologies for animal-derived medicines. AIM: To purify, characterize, and synthesize the bioactive components with the strongest antihepatoma activity from centipedes and determine the antihepatoma mechanism. METHODS: An antihepatoma peptide (scolopentide) was isolated and identified from the centipede scolopendra subspinipes mutilans using a combination of enzymatic hydrolysis, a Sephadex G-25 column, and two steps of high-performance liquid chromatography (HPLC). Additionally, the CCK8 assay was used to select the extracted fraction with the strongest antihepatoma activity. The molecular weight of the extracted scolopentide was characterized by quadrupole time of flight mass spectrometry (QTOF MS), and the sequence was matched by using the Mascot search engine. Based on the sequence and molecular weight, scolopentide was synthesized using solid-phase peptide synthesis methods. The synthetic scolopentide was confirmed by MS and HPLC. The antineoplastic effect of extracted scolopentide was confirmed by CCK8 assay and morphological changes again in vitro. The antihepatoma effect of synthetic scolopentide was assessed by the CCK8 assay and Hoechst staining in vitro and tumor volume and tumor weight in vivo. In the tumor xenograft experiments, qualified model mice (male 5-week-old BALB/c nude mice) were randomly divided into 2 groups (n = 6): The scolopentide group (0.15 mL/d, via intraperitoneal injection of synthetic scolopentide, 500 mg/kg/d) and the vehicle group (0.15 mL/d, via intraperitoneal injection of normal saline). The mice were euthanized by cervical dislocation after 14 d of continuous treatment. Mechanistically, flow cytometry was conducted to evaluate the apoptosis rate of HepG2 cells after treatment with extracted scolopentide in vitro. A Hoechst staining assay was also used to observe apoptosis in HepG2 cells after treatment with synthetic scolopentide in vitro. CCK8 assays and morphological changes were used to compare the cytotoxicity of synthetic scolopentide to liver cancer cells and normal liver cells in vitro. Molecular docking was performed to clarify whether scolopentide tightly bound to death receptor 4 (DR4) and DR5. qRT-PCR was used to measure the mRNA expression of DR4, DR5, fas-associated death domain protein (FADD), Caspase-8, Caspase-3, cytochrome c (Cyto-C), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), x-chromosome linked inhibitor-of-apoptosis protein and Cellular fas-associated death domain-like interleukin-1ß converting enzyme inhibitory protein in hepatocarcinoma subcutaneous xenograft tumors from mice. Western blot assays were used to measure the protein expression of DR4, DR5, FADD, Caspase-8, Caspase-3, and Cyto-C in the tumor tissues. The reactive oxygen species (ROS) of tumor tissues were tested. RESULTS: In the process of purification, characterization and synthesis of scolopentide, the optimal enzymatic hydrolysis conditions (extract ratio: 5.86%, IC50: 0.310 mg/mL) were as follows: Trypsin at 0.1 g (300 U/g, centipede-trypsin ratio of 20:1), enzymolysis temperature of 46 °C, and enzymolysis time of 4 h, which was superior to freeze-thawing with liquid nitrogen (IC50: 3.07 mg/mL). A peptide with the strongest antihepatoma activity (scolopentide) was further purified through a Sephadex G-25 column (obtained A2) and two steps of HPLC (obtained B5 and C3). The molecular weight of the extracted scolopentide was 1018.997 Da, and the peptide sequence was RAQNHYCK, as characterized by QTOF MS and Mascot. Scolopentide was synthesized in vitro with a qualified molecular weight (1018.8 Da) and purity (98.014%), which was characterized by MS and HPLC. Extracted scolopentide still had an antineoplastic effect in vitro, which inhibited the proliferation of Eca-109 (IC50: 76.27 µg/mL), HepG2 (IC50: 22.06 µg/mL), and A549 (IC50: 35.13 µg/mL) cells, especially HepG2 cells. Synthetic scolopentide inhibited the proliferation of HepG2 cells (treated 6, 12, and 24 h) in a concentration-dependent manner in vitro, and the inhibitory effects were the strongest at 12 h (IC50: 208.11 µg/mL). Synthetic scolopentide also inhibited the tumor volume (Vehicle vs Scolopentide, P = 0.0003) and weight (Vehicle vs Scolopentide, P = 0.0022) in the tumor xenograft experiment. Mechanistically, flow cytometry suggested that the apoptosis ratios of HepG2 cells after treatment with extracted scolopentide were 5.01% (0 µg/mL), 12.13% (10 µg/mL), 16.52% (20 µg/mL), and 23.20% (40 µg/mL). Hoechst staining revealed apoptosis in HepG2 cells after treatment with synthetic scolopentide in vitro. The CCK8 assay and morphological changes indicated that synthetic scolopentide was cytotoxic and was significantly stronger in HepG2 cells than in L02 cells. Molecular docking suggested that scolopentide tightly bound to DR4 and DR5, and the binding free energies were-10.4 kcal/mol and-7.1 kcal/mol, respectively. In subcutaneous xenograft tumors from mice, quantitative real-time polymerase chain reaction and western blotting suggested that scolopentide activated DR4 and DR5 and induced apoptosis in SMMC-7721 Liver cancer cells by promoting the expression of FADD, caspase-8 and caspase-3 through a mitochondria-independent pathway. CONCLUSION: Scolopentide, an antihepatoma peptide purified from centipedes, may inspire new antihepatoma agents. Scolopentide activates DR4 and DR5 and induces apoptosis in liver cancer cells through a mitochondria-independent pathway.
Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Quilópodes , Peptídeos , Animais , Humanos , Masculino , Camundongos , Antineoplásicos/análise , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Quilópodes/química , Quilópodes/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Camundongos Nus , Simulação de Acoplamento Molecular , Peptídeos/análise , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Tripsina , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Injeções Intraperitoneais , Células Hep G2RESUMO
OBJECTIVE: To observe the effects of musk and carterii birdw on the pathology and the expressions of inflammatory cytokines in chronic non-bacterial prostatitis (CNBP) rats treated with polygonum extract. METHODS: Five male Wistar rats were used for the preparation of SC purified prostate protein solution, and another 48 randomly divided into four groups: polygonum extract, polygonum extract + musk and carterii birdw, CNBP model control and normal control. CNBP models were established by injecting SC purified prostate protein solution and Freund's complete adjuvant. At 60 days after modeling, the CNBP model control and normal control rats were treated with normal saline, and the other two groups with polygonum extract and polygonum extract + musk and carterii birdw, respectively (polygonum 1.575 g per kg per d, musk 0.021 g per kg per d, and carterii birdw 1.05 g per kg per d). After 14 days of continuous intragastric medication, all the rats were sacrificed for pathological examination, determination of the levels of TNF-alpha, IL-1beta, IL-6 and IL-8 in the prostate tissue homogenate by ELISA, and detection of the mRNA and protein expressions of inflammatory cytokines MCP-1 (CCL2) and CCR2 by RT-PCR and Western blot. RESULTS: The polygonum extract + musk and carterii birdw group showed apparent improvement in the structure of the prostate tissue but no inflammatory infiltration, as was quite obvious in the polygonum extract group. Polygonum extract + musk and carterii birdw significantly decreased the inflammatory cytokines TNF-alpha ( [11.04 +/- 4.07] pg/ml), IL-1beta ([16.94 +/- 4.26] pg/ml), IL-6 ([110.08 +/- 28.42] pg/ml) and IL-8 ([26.28 +/- 7.36] pg/ml) in the prostate tissue, as compared with polygonum extract alone ([63.21 +/- 21.37] pg/ml, [41.32 +/- 14.62] pg/ml, [177.64 +/- 42.65] pg/ml and [96.37 +/- 37.61] pg/ml) (P < 0.05, P < 0.01). The former also exhibited significantly lower expressions of MCP-1 mRNA (0.32 +/- 0.17), MCP-1 protein (0.28 +/- 0.15), CCR2 mRNA (0.28 +/- 0.11) and CCR2 protein (0.11 +/- 0.04) than either the model control group (1.15 +/- 0.39, 0.93 +/- 0.34, 0.83 +/- 0.26 and 0.93 +/- 0.34) (P < 0.01), or the polygonum extract group (0.65 +/- 0.27, 0.56 +/- 0.22, 0.78 +/- 0.24 and 0.25 +/- 0.09) (P < 0.05, P < 0.01). CONCLUSION: Musk and carterii birdw can enhance the effect of polygonum extract on chronic prostatitis, reduce inflammatory response and improve tissue repair of the prostate in rats.
Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Ácidos Graxos Monoinsaturados/uso terapêutico , Fitoterapia , Prostatite/tratamento farmacológico , Animais , Doença Crônica , Modelos Animais de Doenças , Inflamação , Masculino , Extratos Vegetais/uso terapêutico , Polygonum , Ratos , Ratos WistarRESUMO
OBJECTIVE: To identify specific Chinese medicines (CM) that may benefit patients with primary liver cancer (PLC), and to explore the mechanism of action of these medicines. METHODS: In this retrospective, singlecenter study, prescription information from PLC patients was used in combination with Traditional Chinese Medicine Inheritance Supports System to identify the specific core drugs. A system pharmacology approach was employed to explore the mechanism of action of these medicines. RESULTS: Taking CM more than 6 months was significantly associated with improved survival outcomes. In total, 77 putative targets and 116 bioactive ingredients of the core drugs were identified and included in the analysis (P<0.05). A total of 1,036 gene ontology terms were found to be enriched in PLC. A total of 75 pathways identified from Kyoto Encyclopedia of Genes and Genomes were also enriched in this disease, including fluid shear stress, interleukin-17 signaling, signaling between advanced glycan end products and their receptors, cellular senescence, tumor necrosis factor signaling, p53 signaling, cell cycle signaling, steroid hormone biosynthesis, T-helper 17 cell differentiation, and metabolism of xenobiotics by cytochrome. Docking studies suggested that the ingredients in the core drugs exert therapeutic effects in PLC by modulating c-Jun and interleukin-6. CONCLUSIONS: Receiving CM for 6 months or more improves survival for the patients with PLC. The core drugs that really benefit for PLC patients likely regulates the tumor microenvironment and tumor itself.
Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Mineração de Dados , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Medicina Tradicional Chinesa , Farmacologia em Rede , Estudos Retrospectivos , Microambiente TumoralRESUMO
Objective: To investigate the molecular mechanisms of Gupi Xiaoji decoction on apoptosis of human hepatoma cells HepG2. Methods: HepG2 cells were divided into 4 groups: control group (Control), blank serum group (Blank), Gupi Xiaoji Yin serum group (GPXJY) and cisplatin group (Positive). Eight duplicate holes were set in each group. After treated with Gupi Xiaoji Decoction-containing serum or cisplatin for 24 hours, the cell viability, the number of viable cells, the state of apoptosis, the cell cycle and the mitochondrial membrane potential were detected, and the level of lipid peroxidation (MDA) and glycolysis rate of the cells were detected. The expressions of apoptotic Bax, Bcl-2, and Caspase-3 proteins, and the contents of triacylglycerol (TG), cholesterol (TC), pyruvate and glucose in the cell supernatant were detected. Results: Compared with the control group, in the GPXJY group, the inhibition rate was increased (Pï¼0.05), the number of cells was decreased, the number of apoptosis-positive cells was increased (Pï¼0.01), the number of cells in the G1 phase was increased significantly (Pï¼0.05), and the cell membrane potential was decreased (Pï¼0.05,Pï¼0.01), the glycolytic function was inhibited significantly, the MDA level was increased, the expressions of Bax and Caspase-3 in the GPXJY group were increased, and the expression of Bcl-2 was decreased (Pï¼0.05, Pï¼0.01). In cell supernatant, the TC, TG and glucose contents were decreased significantly, and the pyruvate content was increased significantly (Pï¼0.05,Pï¼0.01). Conclusion: Gupi Xiaoji Decoction can induce apoptosis of HepG2 cells and may play a role in energy metabolism.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Apoptose , Caspase 3/metabolismo , Cisplatino , Medicamentos de Ervas Chinesas , Glucose , Células Hep G2 , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Piruvatos , Proteína X Associada a bcl-2/metabolismoRESUMO
BACKGROUND: In traditional Chinese medicine (TCM), frankincense and myrrh are the main components of the antitumor drug Xihuang Pill. These compounds show anticancer activity in other biological systems. However, whether frankincense and/or myrrh can inhibit the occurrence of hepatocellular carcinoma (HCC) is unknown, and the potential molecular mechanism(s) has not yet been determined. AIM: To predict and determine latent anti-HCC therapeutic targets and molecular mechanisms of frankincense and myrrh in vivo. METHODS: In the present study, which was based on the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (http://tcmspw.com/tcmsp.php), Universal Protein database (http://www.uniprot.org), GeneCards: The Human Gene Database (http://www.genecards.org/) and Comparative Toxicogenomics Database (http://www.ctdbase.org/), the efficacy of and mechanism by which frankincense and myrrh act as anti-HCC compounds were predicted. The core prediction targets were screened by molecular docking. In vivo, SMMC-7721 human liver cancer cells were transplanted as xenografts into nude mice to establish a subcutaneous tumor model, and two doses of frankincense plus myrrh or one dose of an EGFR inhibitor was administered to these mice continuously for 14 d. The tumors were collected and evaluated: the tumor volume and growth rate were gauged to evaluate tumor growth; hematoxylin-eosin staining was performed to estimate histopathological changes; immunofluorescence (IF) was performed to detect the expression of CD31, α-SMA and collagen IV; transmission electron microscopy (TEM) was conducted to observe the morphological structure of vascular cells; enzyme-linked immunosorbent assay (ELISA) was performed to measure the levels of secreted HIF-1α and TNF-α; reverse transcription-polymerase chain reaction (RT-qPCR) was performed to measure the mRNA expression of HIF-1α, TNF-α, VEGF and MMP-9; and Western blot (WB) was performed to determine the levels of proteins expressed in the EGFR-mediated PI3K/Akt and MAPK signaling pathways. RESULTS: The results of the network pharmacology analysis showed that there were 35 active components in the frankincense and myrrh extracts targeting 151 key targets. The molecular docking analysis showed that both boswellic acid and stigmasterol showed strong affinity for the targets, with the greatest affinity for EGFR. Frankincense and myrrh treatment may play a role in the treatment of HCC by regulating hypoxia responses and vascular system-related pathological processes, such as cytokine-receptor binding, and pathways, such as those involving serine/threonine protein kinase complexes and MAPK, HIF-1 and ErbB signaling cascades. The animal experiment results were verified. First, we found that, through frankincense and/or myrrh treatment, the volume of subcutaneously transplanted HCC tumors was significantly reduced, and the pathological morphology was attenuated. Then, IF and TEM showed that frankincense and/or myrrh treatment reduced CD31 and collagen IV expression, increased the coverage of perivascular cells, tightened the connection between cells, and improved the shape of blood vessels. In addition, ELISA, RT-qPCR and WB analyses showed that frankincense and/or myrrh treatment inhibited the levels of hypoxia-inducible factors, inflammatory factors and angiogenesis-related factors, namely, HIF-1α, TNF-α, VEGF and MMP-9. Furthermore, mechanistic experiments illustrated that the effect of frankincense plus myrrh treatment was similar to that of an EGFR inhibitor with regard to controlling EGFR activation, thereby inhibiting the phosphorylation activity of its downstream targets: the PI3K/Akt and MAPK (ERK, p38 and JNK) pathways. CONCLUSION: In summary, frankincense and myrrh treatment targets tumor blood vessels to exert anti-HCC effects via EGFR-activated PI3K/Akt and MAPK signaling pathways, highlighting the potential of this dual TCM compound as an anti-HCC candidate.
RESUMO
BACKGROUND: The phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin (PI3K/Akt/mTOR) signalling pathway is crucial for cell survival, differentiation, apoptosis and metabolism. Xihuang pills (XHP) are a traditional Chinese preparation with antitumour properties. They inhibit the growth of breast cancer, glioma, and other tumours by regulating the PI3K/Akt/mTOR signalling pathway. However, the effects and mechanisms of action of XHP in hepatocellular carcinoma (HCC) remain unclear. Regulation of the PI3K/Akt/mTOR signalling pathway effectively inhibits the progression of HCC. However, no study has focused on the XHP-associated PI3K/Akt/mTOR signalling pathway. Therefore, we hypothesized that XHP might play a role in inhibiting HCC through the PI3K/Akt/mTOR signalling pathway. AIM: To confirm the effect of XHP on HCC and the possible mechanisms involved. METHODS: The chemical constituents and active components of XHP were analysed using ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS). Cell-based experiments and in vivo xenograft tumour experiments were utilized to evaluate the effect of XHP on HCC tumorigenesis. First, SMMC-7721 cells were incubated with different concentrations of XHP (0, 0.3125, 0.625, 1.25, and 2.5 mg/mL) for 12 h, 24 h and 48 h. Cell viability was assessed using the CCK-8 assay, followed by an assessment of cell migration using a wound healing assay. Second, the effect of XHP on the apoptosis of SMMC-7721 cells was evaluated. SMMC-7721 cells were stained with fluorescein isothiocyanate and annexin V/propidium iodide. The number of apoptotic cells and cell cycle distribution were measured using flow cytometry. The cleaved protein and mRNA expression levels of caspase-3 and caspase-9 were detected using Western blotting and quantitative reverse-transcription polymerase chain reaction (RT-qPCR), respectively. Third, Western blotting and RT-qPCR were performed to confirm the effects of XHP on the protein and mRNA expression of components of the PI3K/Akt/mTOR signalling pathway. Finally, the effects of XHP on the tumorigenesis of subcutaneous hepatocellular tumours in nude mice were assessed. RESULTS: The following 12 compounds were identified in XHP using high-resolution mass spectrometry: Valine, 4-gingerol, myrrhone, ricinoleic acid, glycocholic acid, curzerenone, 11-keto-ß-boswellic acid, oleic acid, germacrone, 3-acetyl-9,11-dehydro-ß-boswellic acid, 5ß-androstane-3,17-dione, and 3-acetyl-11-keto-ß-boswellic acid. The cell viability assay results showed that treatment with 0.625 mg/mL XHP extract decreased HCC cell viability after 12 h, and the effects were dose- and time-dependent. The results of the cell scratch assay showed that the migration of HCC cells was significantly inhibited in a time-dependent manner by the administration of XHP extract (0.625 mg/mL). Moreover, XHP significantly inhibited cell migration and resulted in cell cycle arrest and apoptosis. Furthermore, XHP downregulated the PI3K/Akt/mTOR signalling pathway, which activated apoptosis executioner proteins (e.g., caspase-9 and caspase-3). The inhibitory effects of XHP on HCC cell growth were determined in vivo by analysing the tumour xenograft volumes and weights. CONCLUSION: XHP inhibited HCC cell growth and migration by stimulating apoptosis via the downregulation of the PI3K/Akt/mTOR signalling pathway, followed by the activation of caspase-9 and caspase-3. Our findings clarified that the antitumour effects of XHP on HCC cells are mediated by the PI3K/Akt/mTOR signalling pathway, revealing that XHP may be a potential complementary therapy for HCC.
RESUMO
OBJECTIVE: To study the effects of Jiawei Huzhang San (JWHZS) decoction on the expressions of the inflammatory factors monocyte chemoattractant protein-1 (MCP-1) and platelet-derived growth factor-BB (PDGF-BB) on experimental autoimmune prostatitis in rats. METHODS: Twelve male Wistar rats were taken as normal controls, and models of experimental autoimmune prostatitis were established in another 60 by injection of SC purified prostate protein with FCA, and then divided into five groups to be treated with normal saline, indomethacin, high-dose JWHZS (0.445 g/kg), medium-dose JWHZS (0.223 g/kg) and low-dose JWHZS (0.089 g/kg), respectively. All the rats were sacrificed at 30 days after the treatment for detection of the mRNA and protein expressions of inflammatory factors by immunohistochemistry and fluorescent quantitative RT-PCR. RESULTS: In the high-, medium- and low-dose JWHZS groups, the mRNA expressions of MCP-1 (0.31 +/- 0.14, 0.49 +/- 0.21 and 0.62 +/- 0.28) and PDGF-BB (0.50 +/- 0.22, 0.54 +/- 0.17 and 0.71 +/- 0.29), and the protein expressions of MCP-1 (677 +/- 208, 725 +/- 311 and 1302 +/- 884) and PDGF-BB (1265 +/- 698, 1347 +/- 827 and 1655 +/- 812) were significantly lower than in the model control group (MCP-1 mRNA: 1.12 +/- 0.43; MCP-1 protein: 2201 +/- 934; PDGF-BB mRNA: 1.14 +/- 0.51; PDGF-BB protein: 2754 +/- 852) (P < 0.05). And JWHZS exhibited a significantly better activity at high and medium doses than at a low dose (P < 0.05). In the indomethacin control group, both the mRNA and protein expressions of MCP-1 (0.71 +/- 0.34 and 1824 +/- 1157) and PDGF-BB (1.08 +/- 0.37 and 2493 +/- 924) were markedly higher than in the JWHZS groups (P < 0.01). CONCLUSION: Down-regulation of the inflammatory factors MCP-1 and PDGF-BB may be the important molecular mechanism of JWHZS acting on experimental autoimmune prostatitis.
Assuntos
Doenças Autoimunes/tratamento farmacológico , Quimiocina CCL2/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Fitoterapia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Prostatite/tratamento farmacológico , Animais , Doenças Autoimunes/metabolismo , Becaplermina , Modelos Animais de Doenças , Inflamação , Masculino , Prostatite/metabolismo , Proteínas Proto-Oncogênicas c-sis , RNA Mensageiro/genética , Ratos , Ratos WistarRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is characterized by dysregulation of the immune microenvironment and the development of chemoresistance. Specifically, expression of the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) axis, an immune checkpoint, may lead to tumour immune escape, resulting in disease progression. The latest research shows that tumour immune escape may be caused by the upregulation of PD-L1 mediated by hypoxia-inducible factor-1 alpha (HIF-1α), and simultaneous inhibition of HIF-1α and PD-L1 has the potential to enhance the host's antitumour immunity. Moreover, inhibition of the PD-1/PD-L1 axis may mitigate tumour chemoresistance. Shuyu pills (SYPs) contain immunity-enhancing and antitumour components, making them a potential HCC treatment. AIM: To investigate the efficacy of SYPs for HCC treatment via simultaneous HIF-1α and PD-L1 inhibition and the mechanism involved. METHODS: A subcutaneous xenograft tumour model was first established in BALB/c nude mice by the subcutaneous injection of 1 × 107 SMMC-7721 cells. Male mice (male, 5 weeks old; n = 24) were then randomly divided into the following four groups (n = 6): Control (0.9% normal saline), SYP (200 mg/kg), SYP + cisplatin (DDP) (200 mg/kg + 5 mg/kg DDP weekly via intraperitoneal injection), and DDP (5 mg/kg cisplatin weekly via intraperitoneal injection). The dose of saline or SYPs for the indicated mouse groups was 0.2 mL/d via intragastric administration. The tumour volumes and body weights of the mice were measured every 2 d. The mice were euthanized by cervical dislocation after 14 d of continuous treatment, and the xenograft tissues were excised and weighed. Western blot assays were used to measure the protein expression of HIF-1α, PD-1, PD-L1, CD4+ T cells, and CD8+ T cells in HCC tumours from mice. Quantitative reverse transcription polymerase chain reaction was used for real-time quantitative detection of PD-1, PD-L1, and HIF-1α mRNA expression. An immunofluorescence assay was conducted to examine the expression of CD4+ T cells and CD8+ T cells. RESULTS: Compared to mice in the control group, those in the SYP and SYP + DDP groups exhibited reduced tumour volumes and tumour weights. Moreover, the protein and mRNA expression levels of the oncogene HIF-1α and that of the negative immunomodulatory factors PD-1 and PD-L1 were decreased in both the SYP and SYP + DDP groups, with the decrease effects being more prominent in the SYP + DDP group than in the SYP group (HIF-1α protein: Control vs SYP, P = 0.0129; control vs SYP + DDP, P = 0.0004; control vs DDP, P = 0.0152, SYP + DDP vs DDP, P = 0.0448; HIF-1α mRNA: control vs SYP, P = 0.0009; control vs SYP + DDP, P < 0.0001; control vs DDP, P = 0.0003, SYP vs SYP + DDP, P = 0.0192. PD-1 protein: Control vs SYP, P = 0.0099; control vs SYP + DDP, P < 0.0001, SPY vs SYP + DDP, P = 0.0009; SYP + DDP vs DDP, P < 0.0001; PD-1 mRNA: control vs SYP, P = 0.0002; control vs SYP + DDP, P < 0.0001; control vs DDP, P = 0.0003, SPY vs SYP + DDP, P = 0.0003; SYP + DDP vs DDP, P = 0.0002. PD-L1 protein: control vs SYP, P < 0.0001; control vs SYP + DDP, P < 0.0001; control vs DDP, P < 0.0001, SPY vs SYP + DDP, P = 0.0040; SYP + DDP vs DDP, P = 0.0010; PD-L1 mRNA: Control vs SYP, P < 0.0001; control vs SYP + DDP, P < 0.0001; control vs DDP, P < 0.0001, SPY vs SYP + DDP, P < 0.0001; SYP + DDP vs DDP, P = 0.0014). Additionally, the quantitative and protein expression levels of CD4+ T cells and CD8+ T cells were simultaneously upregulated in the SYP + DDP group, whereas only the expression of CD4+ T cells was upregulated in the SYP group. (CD4+ T cell quantitative: Control vs SYP + DDP, P < 0.0001, SYP vs SYP + DDP, P = 0.0005; SYP + DDP vs DDP, P = 0.0002. CD4+ T cell protein: Control vs SYP, P = 0.0033; Control vs SYP + DDP, P < 0.0001; Control vs DDP, P = 0.0021, SYP vs SYP + DDP, P = 0.0004; SYP + DDP vs DDP, P = 0.0006. Quantitative CD8+ T cells: Control vs SYP + DDP, P = 0.0013; SYP vs SYP + DDP, P = 0.0347; SYP + DDP vs DDP, P = 0.0043. CD8+ T cell protein: Control vs SYP + DDP, P < 0.0001; SYP vs SYP + DDP, P < 0.0001; SYP + DDP vs DDP, P < 0.0001). Finally, expression of HIF-1α was positively correlated with that of PD-1/PD-L1 and negatively correlated with the expression of CD4+ T cells and CD8+ T cells. CONCLUSION: SYPs inhibit immune escape and enhance chemosensitization in HCC via simultaneous inhibition of HIF-1α and PD-L1, thus inhibiting the growth of subcutaneous xenograft HCC tumours.
RESUMO
BACKGROUND: Liver cancer is the sixth most frequently occurring cancer in the world and the fourth most common cause of cancer mortality. The pathogenesis of liver cancer is closely associated with inflammation and immune response in the tumor microenvironment. New therapeutic agents for liver cancer, which can control inflammation and restore cellular immunity, are required. Curcumin (Cur) is a natural anti-inflammatory drug, and total ginsenosides (TG) are a commonly used immunoregulatory drug. Of note, both Cur and TG have been shown to exert anti-liver cancer effects. AIM: To determine the synergistic immunomodulatory and anti-inflammatory effects of Cur combined with TG in a mouse model of subcutaneous liver cancer. METHODS: A subcutaneous liver cancer model was established in BALB/c mice by a subcutaneous injection of hepatoma cell line. Animals were treated with Cur (200 mg/kg per day), TG (104 mg/kg per day or 520 mg/kg per day), the combination of Cur (200 mg/kg per day) and TG (104 mg/kg per day or 520 mg/kg per day), or 5-fluorouracil combined with cisplatin as a positive control for 21 d. Tumor volume was measured and the protein expression of programmed cell death 1 and programmed cell death 1 ligand 1 (PD-L1), inflammatory indicators Toll like receptor 4 (TLR4) and nuclear factor-κB (NF-κB), and vascular growth-related factors nitric oxide synthases (iNOS) and matrix metalloproteinase 9 were analyzed by Western blot analysis. CD4+CD25+Foxp3+ regulatory T cells (Tregs) were counted by flow cytometry. RESULTS: The combination therapy of Cur and TG significantly inhibited the growth of liver cancer, as compared to vehicle-treated animals, and TG showed dose dependence. Cur combined with TG-520 markedly decreased the protein expression of PD-L1 (P < 0.0001), while CD4+CD25+Foxp3+ Tregs regulated by the PD-L1 signaling pathway exhibited a positive correlation with PD-L1. Cur combined with TG-520 also inhibited the cascade action mediated by NF-κB (P < 0.0001), thus inhibiting the TLR4/NF-κB signalling pathway (P = 0.0088, P < 0.0001), which is associated with inflammation and acts on PD-L1. It also inhibited the NF-κB-MMP9 signalling pathway (P < 0.0001), which is associated with tumor angiogenesis. CONCLUSION: Cur combined with TG regulates immune escape through the PD-L1 pathway and inhibits liver cancer growth through NF-κB-mediated inflammation and angiogenesis.