Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Gastroenterology ; 160(4): 1330-1344.e11, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33212097

RESUMO

BACKGROUND & AIMS: Molecular evidence of cellular heterogeneity in the human exocrine pancreas has not been yet established because of the local concentration and cascade of hydrolytic enzymes that can rapidly degrade cells and RNA upon pancreatic resection. We sought to better understand the heterogeneity and cellular composition of the pancreas in neonates and adults in healthy and diseased conditions using single-cell sequencing approaches. METHODS: We innovated single-nucleus RNA-sequencing protocols and profiled more than 120,000 cells from pancreata of adult and neonatal human donors. We validated the single-nucleus findings using RNA fluorescence in situ hybridization, in situ sequencing, and computational approaches. RESULTS: We created the first comprehensive atlas of human pancreas cells including epithelial and nonepithelial constituents, and uncovered 3 distinct acinar cell types, with possible implications for homeostatic and inflammatory processes of the pancreas. The comparison with neonatal single-nucleus sequencing data showed a different cellular composition of the endocrine tissue, highlighting the tissue dynamics occurring during development. By applying spatial cartography, involving cell proximity mapping through in situ sequencing, we found evidence of specific cell type neighborhoods, dynamic topographies in the endocrine and exocrine pancreas, and principles of morphologic organization of the organ. Furthermore, similar analyses in chronic pancreatitis biopsy samples showed the presence of acinar-REG+ cells, a reciprocal association between macrophages and activated stellate cells, and a new potential role of tuft cells in this disease. CONCLUSIONS: Our human pancreas cell atlas can be interrogated to understand pancreatic cell biology and provides a crucial reference set for comparisons with diseased tissue samples to map the cellular foundations of pancreatic diseases.


Assuntos
Núcleo Celular/metabolismo , Pâncreas Exócrino/citologia , Adolescente , Adulto , Fatores Etários , Idoso , Animais , Fracionamento Celular , Criança , Pré-Escolar , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Pessoa de Meia-Idade , Modelos Animais , Pâncreas Exócrino/crescimento & desenvolvimento , Pâncreas Exócrino/metabolismo , RNA-Seq , Análise de Célula Única/métodos , Suínos , Adulto Jovem
2.
Front Genet ; 13: 785877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295943

RESUMO

The combination of a cell's transcriptional profile and location defines its function in a spatial context. Spatially resolved transcriptomics (SRT) has emerged as the assay of choice for characterizing cells in situ. SRT methods can resolve gene expression up to single-molecule resolution. A particular computational problem with single-molecule SRT methods is the correct aggregation of mRNA molecules into cells. Traditionally, aggregating mRNA molecules into cell-based features begins with the identification of cells via segmentation of the nucleus or the cell membrane. However, recently a number of cell-segmentation-free approaches have emerged. While these methods have been demonstrated to be more performant than segmentation-based approaches, they are still not easily accessible since they require specialized knowledge of programming languages and access to large computational resources. Here we present SSAM-lite, a tool that provides an easy-to-use graphical interface to perform rapid and segmentation-free cell-typing of SRT data in a web browser. SSAM-lite runs locally and does not require computational experts or specialized hardware. Analysis of a tissue slice of the mouse somatosensory cortex took less than a minute on a laptop with modest hardware. Parameters can interactively be optimized on small portions of the data before the entire tissue image is analyzed. A server version of SSAM-lite can be run completely offline using local infrastructure. Overall, SSAM-lite is portable, lightweight, and easy to use, thus enabling a broad audience to investigate and analyze single-molecule SRT data.

3.
Nat Commun ; 12(1): 3545, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112806

RESUMO

Multiplexed fluorescence in situ hybridization techniques have enabled cell-type identification, linking transcriptional heterogeneity with spatial heterogeneity of cells. However, inaccurate cell segmentation reduces the efficacy of cell-type identification and tissue characterization. Here, we present a method called Spot-based Spatial cell-type Analysis by Multidimensional mRNA density estimation (SSAM), a robust cell segmentation-free computational framework for identifying cell-types and tissue domains in 2D and 3D. SSAM is applicable to a variety of in situ transcriptomics techniques and capable of integrating prior knowledge of cell types. We apply SSAM to three mouse brain tissue images: the somatosensory cortex imaged by osmFISH, the hypothalamic preoptic region by MERFISH, and the visual cortex by multiplexed smFISH. Here, we show that SSAM detects regions occupied by known cell types that were previously missed and discovers new cell types.


Assuntos
Encéfalo/citologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Hibridização in Situ Fluorescente/métodos , Análise de Célula Única/métodos , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Simulação por Computador , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Área Pré-Óptica/citologia , Área Pré-Óptica/diagnóstico por imagem , Córtex Somatossensorial/citologia , Córtex Somatossensorial/diagnóstico por imagem , Transcriptoma/genética , Córtex Visual/citologia , Córtex Visual/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA