Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neurophysiol ; 121(4): 1125-1142, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30726155

RESUMO

We show how to predict whether a neural network will exhibit global synchrony (a one-cluster state) or a two-cluster state based on the assumption of pulsatile coupling and critically dependent upon the phase response curve (PRC) generated by the appropriate perturbation from a partner cluster. Our results hold for a monotonically increasing (meaning longer delays as the phase increases) PRC, which likely characterizes inhibitory fast-spiking basket and cortical low-threshold-spiking interneurons in response to strong inhibition. Conduction delays stabilize synchrony for this PRC shape, whereas they destroy two-cluster states, the former by avoiding a destabilizing discontinuity and the latter by approaching it. With conduction delays, stronger coupling strength can promote a one-cluster state, so the weak coupling limit is not applicable here. We show how jitter can destabilize global synchrony but not a two-cluster state. Local stability of global synchrony in an all-to-all network does not guarantee that global synchrony can be observed in an appropriately scaled sparsely connected network; the basin of attraction can be inferred from the PRC and must be sufficiently large. Two-cluster synchrony is not obviously different from one-cluster synchrony in the presence of noise and may be the actual substrate for oscillations observed in the local field potential (LFP) and the electroencephalogram (EEG) in situations where global synchrony is not possible. Transitions between cluster states may change the frequency of the rhythms observed in the LFP or EEG. Transitions between cluster states within an inhibitory subnetwork may allow more effective recruitment of pyramidal neurons into the network rhythm. NEW & NOTEWORTHY We show that jitter induced by sparse connectivity can destabilize global synchrony but not a two-cluster state with two smaller clusters firing alternately. On the other hand, conduction delays stabilize synchrony and destroy two-cluster states. These results hold if each cluster exhibits a phase response curve similar to one that characterizes fast-spiking basket and cortical low-threshold-spiking cells for strong inhibition. Either a two-cluster or a one-cluster state might provide the oscillatory substrate for neural computations.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Inibição Neural , Transmissão Sináptica , Sincronização Cortical , Potenciais Evocados , Humanos
2.
PLoS Comput Biol ; 12(12): e1005315, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28027309

RESUMO

The establishment of precise neuronal connectivity during development is critical for sensing the external environment and informing appropriate behavioral responses. In the visual system, many connections are organized topographically, which preserves the spatial order of the visual scene. The superior colliculus (SC) is a midbrain nucleus that integrates visual inputs from the retina and primary visual cortex (V1) to regulate goal-directed eye movements. In the SC, topographically organized inputs from the retina and V1 must be aligned to facilitate integration. Previously, we showed that retinal input instructs the alignment of V1 inputs in the SC in a manner dependent on spontaneous neuronal activity; however, the mechanism of activity-dependent instruction remains unclear. To begin to address this gap, we developed two novel computational models of visual map alignment in the SC that incorporate distinct activity-dependent components. First, a Correlational Model assumes that V1 inputs achieve alignment with established retinal inputs through simple correlative firing mechanisms. A second Integrational Model assumes that V1 inputs contribute to the firing of SC neurons during alignment. Both models accurately replicate in vivo findings in wild type, transgenic and combination mutant mouse models, suggesting either activity-dependent mechanism is plausible. In silico experiments reveal distinct behaviors in response to weakening retinal drive, providing insight into the nature of the system governing map alignment depending on the activity-dependent strategy utilized. Overall, we describe novel computational frameworks of visual map alignment that accurately model many aspects of the in vivo process and propose experiments to test them.


Assuntos
Modelos Neurológicos , Percepção de Movimento/fisiologia , Células Ganglionares da Retina/patologia , Colículos Superiores/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Simulação por Computador , Camundongos , Modelos Anatômicos , Células Ganglionares da Retina/citologia , Colículos Superiores/anatomia & histologia , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia
3.
J Neurosci ; 35(47): 15682-95, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26609160

RESUMO

Gamma oscillations are believed to play a critical role in in information processing, encoding, and retrieval. Inhibitory interneuronal network gamma (ING) oscillations may arise from a coupled oscillator mechanism in which individual neurons oscillate or from a population oscillator in which individual neurons fire sparsely and stochastically. All ING mechanisms, including the one proposed herein, rely on alternating waves of inhibition and windows of opportunity for spiking. The coupled oscillator model implemented with Wang-Buzsáki model neurons is not sufficiently robust to heterogeneity in excitatory drive, and therefore intrinsic frequency, to account for in vitro models of ING. Similarly, in a tightly synchronized regime, the stochastic population oscillator model is often characterized by sparse firing, whereas interneurons both in vivo and in vitro do not fire sparsely during gamma, but rather on average every other cycle. We substituted so-called resonator neural models, which exhibit class 2 excitability and postinhibitory rebound (PIR), for the integrators that are typically used. This results in much greater robustness to heterogeneity that actually increases as the average participation in spikes per cycle approximates physiological levels. Moreover, dynamic clamp experiments that show autapse-induced firing in entorhinal cortical interneurons support the idea that PIR can serve as a network gamma mechanism. Furthermore, parvalbumin-positive (PV(+)) cells were much more likely to display both PIR and autapse-induced firing than GAD2(+) cells, supporting the view that PV(+) fast-firing basket cells are more likely to exhibit class 2 excitability than other types of inhibitory interneurons. SIGNIFICANCE STATEMENT: Gamma oscillations are believed to play a critical role in information processing, encoding, and retrieval. Networks of inhibitory interneurons are thought to be essential for these oscillations. We show that one class of interneurons with an abrupt onset of firing at a threshold frequency may allow more robust synchronization in the presence of noise and heterogeneity. The mechanism for this robustness depends on the intrinsic resonance at this threshold frequency. Moreover, we show experimentally the feasibility of the proposed mechanism and suggest a way to distinguish between this mechanism and another proposed mechanism: that of a stochastic population oscillator independent of the dynamics of individual neurons.


Assuntos
Córtex Entorrinal/fisiologia , Ritmo Gama/fisiologia , Interneurônios/fisiologia , Redes Neurais de Computação , Animais , Sincronização Cortical/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Camundongos , Camundongos Transgênicos
4.
J Neurophysiol ; 114(5): 2741-52, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26334008

RESUMO

We address how feedback to a bursting biological pacemaker with intrinsic variability in cycle length can affect that variability. Specifically, we examine a hybrid circuit constructed of an isolated crab anterior burster (AB)/pyloric dilator (PD) pyloric pacemaker receiving virtual feedback via dynamic clamp. This virtual feedback generates artificial synaptic input to PD with timing determined by adjustable phase response dynamics that mimic average burst intervals generated by the lateral pyloric neuron (LP) in the intact pyloric network. Using this system, we measure network period variability dependence on the feedback element's phase response dynamics and find that a constant response interval confers minimum variability. We further find that these optimal dynamics are characteristic of the biological pyloric network. Building upon our previous theoretical work mapping the firing intervals in one cycle onto the firing intervals in the next cycle, we create a theoretical map of the distribution of all firing intervals in one cycle to the distribution of firing intervals in the next cycle. We then obtain an integral equation for a stationary self-consistent distribution of the network periods of the hybrid circuit, which can be solved numerically given the uncoupled pacemaker's distribution of intrinsic periods, the nature of the network's feedback, and the phase resetting characteristics of the pacemaker. The stationary distributions obtained in this manner are strongly predictive of the experimentally observed distributions of hybrid network period. This theoretical framework can provide insight into optimal feedback schemes for minimizing variability to increase reliability or maximizing variability to increase flexibility in central pattern generators driven by pacemakers with feedback.


Assuntos
Potenciais de Ação , Geradores de Padrão Central/fisiologia , Retroalimentação Fisiológica , Gânglios dos Invertebrados/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Relógios Biológicos , Braquiúros , Piloro/inervação , Piloro/fisiologia
5.
Elife ; 122023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37211984

RESUMO

The developing visual thalamus and cortex extract positional information encoded in the correlated activity of retinal ganglion cells by synaptic plasticity, allowing for the refinement of connectivity. Here, we use a biophysical model of the visual thalamus during the initial visual circuit refinement period to explore the role of synaptic and circuit properties in the regulation of such neural correlations. We find that the NMDA receptor dominance, combined with weak recurrent excitation and inhibition characteristic of this age, prevents the emergence of spike-correlations between thalamocortical neurons on the millisecond timescale. Such precise correlations, which would emerge due to the broad, unrefined connections from the retina to the thalamus, reduce the spatial information contained by thalamic spikes, and therefore we term them 'parasitic' correlations. Our results suggest that developing synapses and circuits evolved mechanisms to compensate for such detrimental parasitic correlations arising from the unrefined and immature circuit.


Assuntos
Retina , Tálamo , Animais , Tálamo/fisiologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Mamíferos
6.
Phys Rev Lett ; 108(13): 138104, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22540730

RESUMO

For localization of a sound source, animals and humans process the microsecond interaural time differences of arriving sound waves. How nervous systems, consisting of elements with time constants of about and more than 1 ms, can reach such high precision is still an open question. In this Letter we present a hypothesis and show theoretical and computational evidence that a rather large population of slowly integrating neurons with inhibitory and excitatory inputs (EI neurons) can detect minute temporal disparities in input signals which are significantly less than any time constant in the system.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Humanos , Neurônios/citologia , Localização de Som/fisiologia
7.
Front Neuroinform ; 15: 642933, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025382

RESUMO

Biological neurons can be modeled with different levels of biophysical/biochemical details. The accuracy with which a model reflects the actual physiological processes and ultimately the information function of a neuron, can range from very detailed to a schematic phenomenological representation. This range exists due to the common problem: one needs to find an optimal trade-off between the level of details needed to capture the necessary information processing in a neuron and the computational load needed to compute 1 s of model time. An increase in modeled network size or model-time, for which the solution should be obtained, makes this trade-off pivotal in model development. Numerical simulations become incredibly challenging when an extensive network with a detailed representation of each neuron needs to be modeled over a long time interval to study slow evolving processes, e.g., development of the thalamocortical circuits. Here we suggest a simple, powerful and flexible approach in which we approximate the right-hand sides of differential equations by combinations of functions from three families: Polynomial, piecewise-Linear, Step (PLS). To obtain a single coherent framework, we provide four core principles in which PLS functions should be combined. We show the rationale behind each of the core principles. Two examples illustrate how to build a conductance-based or phenomenological model using the PLS-framework. We use the first example as a benchmark on three different computational platforms: CPU, GPU, and mobile system-on-chip devices. We show that the PLS-framework speeds up computations without increasing the memory footprint and maintains high model fidelity comparable to the fully-computed model or with lookup-table approximation. We are convinced that the full range of neuron models: from biophysical to phenomenological and even to abstract models, may benefit from using the PLS-framework.

8.
eNeuro ; 7(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32198159

RESUMO

All-to-all homogeneous networks of inhibitory neurons synchronize completely under the right conditions; however, many modeling studies have shown that biological levels of heterogeneity disrupt synchrony. Our fundamental scientific question is "how can neurons maintain partial synchrony in the presence of heterogeneity and noise?" A particular subset of strongly interconnected interneurons, the PV+ fast-spiking (FS) basket neurons, are strongly implicated in γ oscillations and in phase locking of nested γ oscillations to theta. Their excitability type apparently varies between brain regions: in CA1 and the dentate gyrus they have type 1 excitability, meaning that they can fire arbitrarily slowly, whereas in the striatum and cortex they have type 2 excitability, meaning that there is a frequency thresh old below which they cannot sustain repetitive firing. We constrained the models to study the effect of excitability type (more precisely bifurcation type) in isolation from all other factors. We use sparsely connected, heterogeneous, noisy networks with synaptic delays to show that synchronization properties, namely the resistance to suppression and the strength of theta phase to γ amplitude coupling, are strongly dependent on the pairing of excitability type with the type of inhibition. Shunting inhibition performs better for type 1 and hyperpolarizing inhibition for type 2. γ Oscillations and their nesting within theta oscillations are thought to subserve cognitive functions like memory encoding and recall; therefore, it is important to understand the contribution of intrinsic properties to these rhythms.


Assuntos
Interneurônios , Potenciais de Ação
9.
Front Neuroinform ; 12: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743871

RESUMO

[This corrects the article on p. 46 in vol. 11, PMID: 28775687.].

10.
Phys Rev E ; 95(3-1): 032215, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415236

RESUMO

The synchronization tendencies of networks of oscillators have been studied intensely. We assume a network of all-to-all pulse-coupled oscillators in which the effect of a pulse is independent of the number of oscillators that simultaneously emit a pulse and the normalized delay (the phase resetting) is a monotonically increasing function of oscillator phase with the slope everywhere less than 1 and a value greater than 2φ-1, where φ is the normalized phase. Order switching cannot occur; the only possible solutions are globally attracting synchrony and cluster solutions with a fixed firing order. For small conduction delays, we prove the former stable and all other possible attractors nonexistent due to the destabilizing discontinuity of the phase resetting at a phase of 0.

12.
Front Neuroinform ; 11: 46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775687

RESUMO

Numerical simulations of brain networks are a critical part of our efforts in understanding brain functions under pathological and normal conditions. For several decades, the community has developed many software packages and simulators to accelerate research in computational neuroscience. In this article, we select the three most popular simulators, as determined by the number of models in the ModelDB database, such as NEURON, GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we study them based on one of the most important characteristics, the range of supported models. Our investigation reveals that brain network simulators may be biased toward supporting a specific set of models. However, all simulators tend to expand the supported range of models by providing a universal environment for the computational study of individual neurons and brain networks. Next, our investigations on the characteristics of computational architecture and efficiency indicate that all simulators compile the most computationally intensive procedures into binary code, with the aim of maximizing their computational performance. However, not all simulators provide the simplest method for module development and/or guarantee efficient binary code. Third, a study of their amenability for high-performance computing reveals that NEST can almost transparently map an existing model on a cluster or multicore computer, while NEURON requires code modification if the model developed for a single computer has to be mapped on a computational cluster. Interestingly, parallelization is the weakest characteristic of BRIAN, which provides no support for cluster computations and limited support for multicore computers. Fourth, we identify the level of user support and frequency of usage for all simulators. Finally, we carry out an evaluation using two case studies: a large network with simplified neural and synaptic models and a small network with detailed models. These two case studies allow us to avoid any bias toward a particular software package. The results indicate that BRIAN provides the most concise language for both cases considered. Furthermore, as expected, NEST mostly favors large network models, while NEURON is better suited for detailed models. Overall, the case studies reinforce our general observation that simulators have a bias in the computational performance toward specific types of the brain network models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA