Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vavilovskii Zhurnal Genet Selektsii ; 25(8): 864-873, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35083405

RESUMO

To date, the association of an imbalance of the intestinal microbiota with various human diseases, including both diseases of the gastrointestinal tract and disorders of the immune system, has been shown. However, despite the huge amount of accumulated data, many key questions still remain unanswered. Given limited data on the composition of the gut microbiota in patients with ulcerative colitis (UC) and irritable bowel syndrome (IBS) from different parts of Siberia, as well as the lack of data on the gut microbiota of patients with bronchial asthma (BA), the aim of the study was to assess the biodiversity of the gut microbiota of patients with IBS, UC and BA in comparison with those of healthy volunteers (HV). In this study, a comparative assessment of the biodiversity and taxonomic structure of gut microbiome was conducted based on the sequencing of 16S rRNA genes obtained from fecal samples of patients with IBS, UC, BA and volunteers. Sequences of the Firmicutes and Bacteroidetes types dominated in all samples studied. The third most common in all samples were sequences of the Proteobacteria type, which contains pathogenic and opportunistic bacteria. Sequences of the Actinobacteria type were, on average, the fourth most common. The results showed the presence of dysbiosis in the samples from patients compared to the sample from HVs. The ratio of Firmicutes/Bacteroidetes was lower in the IBS and UC samples than in HV and higher the BA samples. In the samples from patients with intestinal diseases (IBS and UC), an increase in the proportion of sequences of the Bacteroidetes type and a decrease in the proportion of sequences of the Clostridia class, as well as the Ruminococcaceae, but not Erysipelotrichaceae family, were found. The IBS, UC, and BA samples had signif icantly more Proteobacteria sequences, including Methylobacterium, Sphingomonas, Parasutterella, Halomonas, Vibrio, as well as Escherichia spp. and Shigella spp. In the gut microbiota of adults with BA, a decrease in the proportion of Roseburia, Lachnospira, Veillonella sequences was detected, but the share of Faecalibacterium and Lactobacillus sequences was the same as in healthy individuals. A signif icant increase in the proportion of Halomonas and Vibrio sequences in the gut microbiota in patients with BA has been described for the f irst time.

2.
Vavilovskii Zhurnal Genet Selektsii ; 24(1): 69-79, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33659783

RESUMO

Noroviruses (the Caliciviridae family) are a common cause of acute gastroenteritis in all age groups. These small non-envelope viruses with a single-stranded (+)RNA genome are characterized by high genetic variability. Continuous changes in the genetic diversity of co-circulating noroviruses and the emergence of new recombinant variants are observed worldwide. Recently, new recombinant noroviruses with a novel GII.P16 polymerase associated with different capsid proteins VP1 were reported. As a part of the surveillance study of sporadic cases of acute gastroenteritis in Novosibirsk, a total of 46 clinical samples from children with diarrhea were screened in 2016. Norovirus was detected in six samples from hospitalized children by RT-PCR. The identified noroviruses were classified as recombinant variants GII.P21/GII.3, GII. Pe/GII.4_Sydney_2012, and GII.P16/GII.4_Sydney_2012 by sequencing of the ORF1/ORF2 junction. In Novosibirsk, the first appearance of the new recombinant genotype GII.P16/ GII.4_Sydney_2012 was recorded in spring 2016. Before this study, only four complete genome sequences of the Russian GII.P16/GII.3 norovirus strains were available in the GenBank database. In this work, the complete genome sequence of the Russian strain Hu/GII.P16-GII.4/RUS/Novosibirsk/NS16-C38/2016 (GenBank KY210980) was determined. A comparison of the nucleotide and the deduced amino acid sequences showed a high homology of the Russian strain with GII.P16/GII.4_Sydney_2012 strains from other parts of the world. A comparative analysis showed that several unique substitutions occurred in the GII.P16 polymerase, N-terminal p48 protein, and minor capsid protein VP2 genes, while no unique changes in the capsid VP1 gene were observed. A functional significance of these changes suggests that a wide distribution of the strains with the novel GII.P16 polymerase may be associated both with several amino acid substitutions in the polymerase active center and with the insertion of glutamic acid or glycine in an N-terminal p48 protein that blocks the secretory immunity of intestinal epithelial cells. Further monitoring of genotypes will allow determining the distribution of norovirus recombinants with the polymerase GII.P16 in Russia.

3.
Ticks Tick Borne Dis ; 8(4): 547-553, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28336423

RESUMO

Tick-borne encephalitis virus (TBEV) is divided into three subtypes: European (TBEV-Eu), Siberian (TBEV-Sib), and Far Eastern (TBEV-FE) subtypes. The geographical range of TBEV-Eu dominates in Europe, but this subtype is present focally across the whole non-tropical forested Eurasian belt, through Russia to South Korea. However, the TBEV-Eu strains isolated outside Europe remain poorly characterized. In this study, full-genome sequences of eight TBEV-Eu isolates were determined. These strains were isolated from Ixodes persulcatus ticks, long-tailed ground squirrel (Spermophilus undulatus), and human blood in the natural foci of Western and Eastern Siberia, Russia. A phylogenetic analysis of all available TBEV-Eu genomic sequences revealed that strains from Siberia were closely related to other strains from Europe and South Korea. The closest relation was identified between the Siberian strains and strains from Zmeinogorsk (Western Siberia, Russia) and strain Absettarov (Karelia, Russia), and were most divergent from strains from the Czech Republic and Norway. TBEV-Eu strains isolated in Eastern Siberia were more closely related phylogenetically to strains from South Korea, but strains from Western Siberia grouped together with the strains from Europe, suggesting two genetic TBEV-Eu lineages present in Siberia.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/genética , Genoma Viral , Ixodes/virologia , Sciuridae/virologia , Animais , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Humanos , Filogenia , Análise de Sequência de RNA , Sibéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA