Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 133: 44-51, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27742360

RESUMO

Helicoverpa armigera is one of the major crop pests and is less amenable to current pest control approaches. RNA interference (RNAi) is emerging as a potent arsenal for the insect pest control over current methods. Here, we examined the effect on growth and development in H. armigera by targeting various enzymes/proteins such as proteases like trypsins (HaTry2, 3, 4 and 6), chymotrypsin (HaChy4) and cysteine protease like cathepsin (HaCATHL); glutathione S-transferases (HaGST1a, 6 and 8); esterases (HaAce4, HaJHE); catalase (HaCAT); super-oxide-dismutase (HaCu/ZnSOD); fatty acid binding protein (HaFabp) and chitin deacetylase (HaCda5b) through dsRNA approach. Significant downregulation of cognate mRNA expression and reduced activity of trypsin and GST-like enzyme were evident upon feeding candidate dsRNAs to the larvae. Among these, the highest mortality was observed in HaAce4 dsRNA fed larvae followed by HaJHE; HaCAT; HaCuZnSOD; HaFabp and HaTry3 whereas remaining ones showed relatively lower mortality. Furthermore, the dsRNA fed larvae showed significant reduction in the larval mass and abnormalities at the different stages of H. armigera development compared to their control diets. For example, malformed larvae, pupae and moth at a dose of 60µg/day were evident in high number of individual insects fed on dsRNA containing diets. Moreover, the growth and development of insects and moths were retarded in dsRNA fed larvae. These findings might provide potential new candidates for designing effective dsRNA as pesticide in crop protection.


Assuntos
Proteínas de Insetos/genética , Mariposas/genética , Controle de Pragas/métodos , Interferência de RNA , Animais , Larva/genética , Larva/crescimento & desenvolvimento , Mariposas/crescimento & desenvolvimento , RNA Mensageiro/metabolismo
2.
Data Brief ; 7: 1602-5, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27222861

RESUMO

The data presented in this article is related to the research article "RNAi of selected candidate genes interrupts growth and development of Helicoverpa armigera" (Chikate et al., 2016) [1]. RNA interference (RNAi) is emerging as a potent insect pest control strategy over current methods and their resistance by pest. In this study we tested 15 different in vitro synthesized dsRNAs for gene silencing in Helicoverpa armigera. These dsRNAs were specific against H. armigera enzymes/proteins such as proteases like trypsins (HaTry2, 3, 4 and 6), chymotrypsin (HaChy4) and cysteine proteases such as cathepsin (HaCATHL); glutathione S-transferases (HaGST1a, 6 and 8); esterases (HaAce4, HaJHE); catalase (HaCAT); super-oxide-dismutase (HaCu/ZnSOD); fatty acid binding protein (HaFabp) and chitin deacetylase (HaCda5b). These dsRNAs were fed to second instar larvae at an optimized dose (60 µg/day) for 3 days separately. Effects of dsRNA feeding were observed in terms of larval mass gain, percentage mortality and phenotypic abnormalities in later developmental stages of H. armigera. These findings might provide potential new candidates for designing sequence-specific dsRNA as pesticide in crop protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA