Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Plant Cell ; 36(10): 4109-4131, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38686825

RESUMO

The subgenus Tillandsia (Bromeliaceae) belongs to one of the fastest radiating clades in the plant kingdom and is characterized by the repeated evolution of Crassulacean acid metabolism (CAM). Despite its complex genetic basis, this water-conserving trait has evolved independently across many plant families and is regarded as a key innovation trait and driver of ecological diversification in Bromeliaceae. By producing high-quality genome assemblies of a Tillandsia species pair displaying divergent photosynthetic phenotypes, and combining genome-wide investigations of synteny, transposable element (TE) dynamics, sequence evolution, gene family evolution, and temporal differential expression, we were able to pinpoint the genomic drivers of CAM evolution in Tillandsia. Several large-scale rearrangements associated with karyotype changes between the 2 genomes and a highly dynamic TE landscape shaped the genomes of Tillandsia. However, our analyses show that rewiring of photosynthetic metabolism is mainly obtained through regulatory evolution rather than coding sequence evolution, as CAM-related genes are differentially expressed across a 24-h cycle between the 2 species but are not candidates of positive selection. Gene orthology analyses reveal that CAM-related gene families manifesting differential expression underwent accelerated gene family expansion in the constitutive CAM species, further supporting the view of gene family evolution as a driver of CAM evolution.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Família Multigênica , Elementos de DNA Transponíveis/genética , Metabolismo Ácido das Crassuláceas/genética , Genoma de Planta/genética , Filogenia , Regulação da Expressão Gênica de Plantas , Bromeliaceae/genética , Bromeliaceae/metabolismo , Fotossíntese/genética , Tillandsia/genética , Tillandsia/metabolismo , Sintenia , Genes de Plantas
2.
BMC Plant Biol ; 20(1): 111, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164546

RESUMO

BACKGROUND: The angiosperm family Bromeliaceae comprises over 3.500 species characterized by exceptionally high morphological and ecological diversity, but a very low genetic variation. In many genera, plants are vegetatively very similar which makes determination of non flowering bromeliads difficult. This is particularly problematic with living collections where plants are often cultivated over decades without flowering. DNA barcoding is therefore a very promising approach to provide reliable and convenient assistance in species determination. However, the observed low genetic variation of canonical barcoding markers in bromeliads causes problems. RESULT: In this study the low-copy nuclear gene Agt1 is identified as a novel DNA barcoding marker suitable for molecular identification of closely related bromeliad species. Combining a comparatively slowly evolving exon sequence with an adjacent, genetically highly variable intron, correctly matching MegaBLAST based species identification rate was found to be approximately double the highest rate yet reported for bromeliads using other barcode markers. CONCLUSION: In the present work, we characterize Agt1 as a novel plant DNA barcoding marker to be used for barcoding of bromeliads, a plant group with low genetic variation. Moreover, we provide a comprehensive marker sequence dataset for further use in the bromeliad research community.


Assuntos
Bromeliaceae/genética , Código de Barras de DNA Taxonômico , DNA de Plantas/genética , Proteínas de Plantas/genética , Bromeliaceae/classificação
3.
Plant Cell Environ ; 43(12): 2987-3001, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32677061

RESUMO

The adaptive radiation of Bromeliaceae (pineapple family) is one of the most diverse among Neotropical flowering plants. Diversification in this group was facilitated by shifts in several adaptive traits or "key innovations" including the transition from C3 to CAM photosynthesis associated with xeric (heat/drought) adaptation. We used phylogenomic approaches, complemented by differential gene expression (RNA-seq) and targeted metabolite profiling, to address the mechanisms of C3 /CAM evolution in the extremely species-rich bromeliad genus, Tillandsia, and related taxa. Evolutionary analyses of whole-genome sequencing and RNA-seq data suggest that evolution of CAM is associated with coincident changes to different pathways mediating xeric adaptation in this group. At the molecular level, C3 /CAM shifts were accompanied by gene expansion of XAP5 CIRCADIAN TIMEKEEPER homologs, a regulator involved in sugar- and light-dependent regulation of growth and development. Our analyses also support the re-programming of abscisic acid-related gene expression via differential expression of ABF2/ABF3 transcription factor homologs, and adaptive sequence evolution of an ENO2/LOS2 enolase homolog, effectively tying carbohydrate flux to abscisic acid-mediated abiotic stress response. By pinpointing different regulators of overlapping molecular responses, our results suggest plausible mechanistic explanations for the repeated evolution of correlated adaptive traits seen in a textbook example of an adaptive radiation.


Assuntos
Bromeliaceae/genética , Metabolismo Ácido das Crassuláceas/genética , Especiação Genética , Evolução Biológica , Bromeliaceae/metabolismo , Bromeliaceae/fisiologia , Genes de Plantas/genética , Filogenia , Análise de Sequência de RNA , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
5.
Mol Phylogenet Evol ; 71: 55-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24513576

RESUMO

We present an integrative model predicting associations among epiphytism, the tank habit, entangling seeds, C3 vs. CAM photosynthesis, avian pollinators, life in fertile, moist montane habitats, and net rates of species diversification in the monocot family Bromeliaceae. We test these predictions by relating evolutionary shifts in form, physiology, and ecology to time and ancestral distributions, quantifying patterns of correlated and contingent evolution among pairs of traits and analyzing the apparent impact of individual traits on rates of net species diversification and geographic expansion beyond the ancestral Guayana Shield. All predicted patterns of correlated evolution were significant, and the temporal and spatial associations of phenotypic shifts with orogenies generally accorded with predictions. Net rates of species diversification were most closely coupled to life in fertile, moist, geographically extensive cordilleras, with additional significant ties to epiphytism, avian pollination, and the tank habit. The highest rates of net diversification were seen in the bromelioid tank-epiphytic clade (D(crown) = 1.05 My⁻¹), associated primarily with the Serra do Mar and nearby ranges of coastal Brazil, and in the core tillandsioids (D(crown) = 0.67 My⁻¹), associated primarily with the Andes and Central America. Six large-scale adaptive radiations and accompanying pulses of speciation account for 86% of total species richness in the family. This study is among the first to test a priori hypotheses about the relationships among phylogeny, phenotypic evolution, geographic spread, and net species diversification, and to argue for causality to flow from functional diversity to spatial expansion to species diversity.


Assuntos
Adaptação Biológica , Bromeliaceae/genética , Filogenia , Biodiversidade , América Latina , Sudoeste dos Estados Unidos
6.
Mol Ecol Resour ; 22(3): 927-945, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34606683

RESUMO

Target capture has emerged as an important tool for phylogenetics and population genetics in nonmodel taxa. Whereas developing taxon-specific capture probes requires sustained efforts, available universal kits may have a lower power to reconstruct relationships at shallow phylogenetic scales and within rapidly radiating clades. We present here a newly developed target capture set for Bromeliaceae, a large and ecologically diverse plant family with highly variable diversification rates. The set targets 1776 coding regions, including genes putatively involved in key innovations, with the aim to empower testing of a wide range of evolutionary hypotheses. We compare the relative power of this taxon-specific set, Bromeliad1776, to the universal Angiosperms353 kit. The taxon-specific set results in higher enrichment success across the entire family; however, the overall performance of both kits to reconstruct phylogenetic trees is relatively comparable, highlighting the vast potential of universal kits for resolving evolutionary relationships. For more detailed phylogenetic or population genetic analyses, for example the exploration of gene tree concordance, nucleotide diversity or population structure, the taxon-specific capture set presents clear benefits. We discuss the potential lessons that this comparative study provides for future phylogenetic and population genetic investigations, in particular for the study of evolutionary radiations.


La captura selectiva de secuencias de ADN ha surgido como una herramienta importante para la filogenética y la genética de poblaciones en taxones no-modelo. Mientras que el desarrollo de sondas de captura específicas para cada taxón requiere un esfuerzo sostenido, las colecciones de sondas universales disponibles pueden tener una potencia disminuida para la reconstrucción de relaciones filogenéticas poco profundas o de radiaciones rápidas. Presentamos aquí un conjunto de sondas para la captura selectiva desarrollado recientemente para Bromeliaceae, una familia de plantas extensa, ecológicamente diversa y con tasas de diversificación muy variables. El conjunto de sondas se centra en 1776 regiones de codificación, incluyendo genes supuestamente implicados en rasgos de innovación clave, con el objetivo de potenciar la comprobación de una amplia gama de hipótesis evolutivas. Comparamos la potencia relativa de este conjunto de sondas diseñado para un taxón específico, Bromeliad1776, con la colección universal Angiosperms353. El conjunto específico da lugar a un mayor éxito de captura en toda la familia. Sin embargo, el rendimiento global de ambos kits para reconstruir árboles filogenéticos es relativamente comparable, lo que pone de manifiesto el gran potencial de los kits universales para resolver las relaciones evolutivas. Para análisis filogenéticos o de genética de poblaciones más detallados, como por ejemplo la exploración de la congruencia de los árboles de genes, la diversidad de nucleótidos o la estructura de la población, el conjunto de captura específico para Bromeliaceae presenta claras ventajas. Discutimos las lecciones potenciales que este estudio comparativo proporciona para futuras investigaciones filogenéticas y de genética de poblaciones, en particular para el estudio de las radiaciones evolutivas.


Assuntos
Evolução Biológica , Genética Populacional , Filogenia
7.
Am J Bot ; 98(11): 1841-54, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22012926

RESUMO

PREMISE OF THE STUDY: The South American genus Gymnocalycium (Cactoideae-Trichocereae) demonstrates how the sole use of morphological data in Cactaceae results in conflicts in assessing phylogeny, constructing a taxonomic system, and analyzing trends in the evolution of the genus. METHODS: Molecular phylogenetic analysis was performed using parsimony and Bayesian methods on a 6195-bp data matrix of plastid DNA sequences (atpI-atpH, petL-psbE, trnK-matK, trnT-trnL-trnF) of 78 samples, including 52 species and infraspecific taxa representing all the subgenera of Gymnocalycium. We assessed morphological character evolution using likelihood methods to optimize characters on a Bayesian tree and to reconstruct possible ancestral states. KEY RESULTS: The results of the phylogenetic study confirm the monophyly of the genus, while supporting overall the available infrageneric classification based on seed morphology. Analysis showed the subgenera Microsemineum and Macrosemineum to be polyphyletic and paraphyletic. Analysis of morphological characters showed a tendency toward reduction of stem size, reduction in quantity and hardiness of spines, increment of seed size, development of napiform roots, and change from juicy and colorful fruits to dry and green fruits. CONCLUSIONS: Gymnocalycium saglionis is the only species of Microsemineum and a new name is required to identify the clade including the remaining species of Microsemineum; we propose the name Scabrosemineum in agreement with seed morphology. Identifying morphological trends and environmental features allows for a better understanding of the events that might have influenced the diversification of the genus.


Assuntos
Cactaceae/classificação , Cactaceae/genética , Evolução Molecular , Filogenia , Análise de Sequência de DNA , Teorema de Bayes , Evolução Biológica , Cactaceae/anatomia & histologia , DNA de Cloroplastos/análise , Frutas/anatomia & histologia , Geografia , Dados de Sequência Molecular , Raízes de Plantas/anatomia & histologia , Caules de Planta/anatomia & histologia , Sementes/anatomia & histologia , América do Sul
8.
Am J Bot ; 98(5): 872-95, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21613186

RESUMO

PREMISE: Bromeliaceae form a large, ecologically diverse family of angiosperms native to the New World. We use a bromeliad phylogeny based on eight plastid regions to analyze relationships within the family, test a new, eight-subfamily classification, infer the chronology of bromeliad evolution and invasion of different regions, and provide the basis for future analyses of trait evolution and rates of diversification. METHODS: We employed maximum-parsimony, maximum-likelihood, and Bayesian approaches to analyze 9341 aligned bases for four outgroups and 90 bromeliad species representing 46 of 58 described genera. We calibrate the resulting phylogeny against time using penalized likelihood applied to a monocot-wide tree based on plastid ndhF sequences and use it to analyze patterns of geographic spread using parsimony, Bayesian inference, and the program S-DIVA. RESULTS: Bromeliad subfamilies are related to each other as follows: (Brocchinioideae, (Lindmanioideae, (Tillandsioideae, (Hechtioideae, (Navioideae, (Pitcairnioideae, (Puyoideae, Bromelioideae))))))). Bromeliads arose in the Guayana Shield ca. 100 million years ago (Ma), spread centrifugally in the New World beginning ca. 16-13 Ma, and dispersed to West Africa ca. 9.3 Ma. Modern lineages began to diverge from each other roughly 19 Ma. CONCLUSIONS: Nearly two-thirds of extant bromeliads belong to two large radiations: the core tillandsioids, originating in the Andes ca. 14.2 Ma, and the Brazilian Shield bromelioids, originating in the Serro do Mar and adjacent regions ca. 9.1 Ma.


Assuntos
Bromeliaceae/genética , Evolução Molecular , Filogenia , Plastídeos/genética , Teorema de Bayes , Evolução Biológica , Bromeliaceae/classificação , DNA de Plantas/genética , Genes de Plantas , Funções Verossimilhança , Dados de Sequência Molecular , NADH Desidrogenase/genética , Proteínas de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de DNA
9.
Am J Bot ; 92(2): 337-51, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21652410

RESUMO

Molecular phylogenetic studies of seven plastid DNA regions were used to resolve circumscriptions at generic and infrageneric levels in subfamily Tillandsioideae of Bromeliaceae. One hundred and ten tillandsioid samples were analyzed, encompassing 10 genera, 104 species, and two cultivars. Two species of Bromelioideae, eight species of the polymorphic Pitcairnioideae, and two species of Rapateaceae were selected as outgroups. Parsimony analysis was based on sequence variation of five noncoding (partial 5' and 3' trnK intron, rps16 intron, trnL intron, trnL-trnF intergenic spacer, atpB-rbcL intergenic spacer) and two coding plastid regions (rbcL and matK). Phylogenetic analyses of individual regions produced congruent, but mostly weakly supported or unresolved clades. Results of the combined data set, however, clearly show that subfamily Tillandsioideae is monophyletic. The earliest divergence separates a lineage comprised of Glomeropitcairnia and Catopsis from the "core" tillandsioids. In their present circumscriptions, genera Vriesea and Tillandsia, and their subgenera or sections, as well as Guzmania and Mezobromelia, are poly- and/or paraphyletic. Genera Alcantarea, Werauhia, Racinaea, and Viridantha appear monophyletic, but separation of these from Vriesea and Tillandsia makes the remainder paraphyletic. Nevertheless, Tillandsioideae separates into four main clades, which are proposed as tribes, viz., Catopsideae, Glomeropitcairnieae, Vrieseeae, and Tillandsieae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA