Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proteomics ; 24(18): e2300375, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38197488

RESUMO

Multipotent mesenchymal stromal cells (MSCs)-derived extracellular vesicles (EVs) play important roles in cellular communication and are extensively studied as promising therapeutic agents. While there is a substantial pool of studies on liquid-phase EVs, data on EVs bound to the extracellular matrix (ECM) is lacking. There is also an emerging trend of accumulating and comparing data on characteristics of EVs obtained in different culturing conditions. Aiming to reveal proteomic signatures of EVs obtained from conditioned media and ECM of MSCs cultured in 2D and 3D conditions, we performed liquid chromatography with tandem mass spectrometry. Bioinformatic analysis revealed common patterns in proteomic composition of liquid-phase EVs and matrix-bound vesicles (MBVs), namely extracellular environment organization, immune, and transport pathways enrichment. However, extracellular environmental organization pathways are more enriched in liquid-phase EVs than in MBVs, while MBVs proteins noticeably enrich enzymatic pathways. Furthermore, each type of EVs from 2D and 3D cultures has a unique differential abundance profile. We have also performed comparative functional assays, namely scratch assay to assess EVs effect on cell migration and tubulogenesis assay to evaluate EVs angiogenic potential. We found that both liquid-phase EVs and MBVs enhance cell migration, while angiogenic potential is higher in MBVs. Results of the present study suggest that while both liquid-phase EVs and MBVs have therapeutic potential, some unique features of each subgroup may determine optimal areas of their application.


Assuntos
Matriz Extracelular , Vesículas Extracelulares , Células-Tronco Mesenquimais , Proteômica , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Matriz Extracelular/metabolismo , Movimento Celular , Espectrometria de Massas em Tandem , Técnicas de Cultura de Células em Três Dimensões/métodos , Cromatografia Líquida/métodos , Técnicas de Cultura de Células/métodos , Proteoma/metabolismo , Proteoma/análise
2.
Soft Matter ; 20(26): 5095-5104, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888165

RESUMO

The mechanical properties of soft gels hold significant relevance in biomedicine and biomaterial design, including the development of tissue engineering constructs and bioequivalents. It is important to adequately characterize the gel's mechanical properties since they play a role both in the overall structural properties of the construct and the physiological responses of cells. The question remains which approach for the mechanical characterization is most suitable for specific biomaterials. Our investigation is centered on the comparison of three types of gels and four distinct mechanical testing techniques: shear rheology, compression, microindentation, and nanoindentation by atomic force microscopy. While analyzing an elastic homogeneous synthetic hydrogel (a polyacrylamide gel), we observed close mechanical results across the different testing techniques. However, our findings revealed more distinct outcomes when assessing a highly viscoelastic gel (Ecoflex) and a heterogeneous biopolymer hydrogel (enzymatically crosslinked gelatin). To ensure precise data interpretation, we introduced correction factors to account for the boundary conditions inherent in many of the testing methods. The results of this study underscore the critical significance of considering both the temporal and spatial scales in mechanical measurements of biomaterials. Furthermore, they encourage the employment of a combination of diverse testing techniques, particularly in the characterization of heterogeneous viscoelastic materials such as biological samples. The obtained results will contribute to the refinement of mechanical testing protocols and advance the development of soft gels for tissue engineering.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Teste de Materiais , Materiais Biocompatíveis/química , Hidrogéis/química , Elasticidade , Reologia , Viscosidade , Resinas Acrílicas/química , Gelatina/química , Engenharia Tecidual
3.
Immunol Invest ; 53(5): 730-751, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634572

RESUMO

BACKGROUND: Glioblastoma (GBM) is an extremely aggressive form of brain tumor with low survival rates. Current treatments such as chemotherapy, radiation, and surgery are problematic due to tumor growth, invasion, and tumor microenvironment. GBM cells are resistant to these standard treatments, and the heterogeneity of the tumor makes it difficult to find a universal approach. Progression of GBM and acquisition of resistance to therapy are due to the complex interplay between tumor cells and the TME. A significant portion of the TME consists of an inflammatory infiltrate, with microglia and macrophages being the predominant cells. METHODS: Analysis of the literature data over a course of 5 years suggest that the tumor-associated macrophages (TAMs) are capable of releasing cytokines and growth factors that promote tumor proliferation, survival, and metastasis while inhibiting immune cell function at the same time. RESULTS: Thus, immunosuppressive state, provided with this intensively studied kind of TME cells, is supposed to promote GBM development through TAMs modulation of tumor treatment-resistance and aggressiveness. Therefore, TAMs are an attractive therapeutic target in the treatment of glioblastoma. CONCLUSION: This review provides a comprehensive overview of the latest research on the nature of TAMs and the development of therapeutic strategies targeting TAMs, focusing on the variety of macrophage properties, being modulated, as well as molecular targets.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imunoterapia , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Glioblastoma/terapia , Glioblastoma/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Animais , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos/imunologia , Citocinas/metabolismo , Citocinas/imunologia
4.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891793

RESUMO

Joint-resident chondrogenic precursor cells have become a significant therapeutic option due to the lack of regenerative capacity in articular cartilage. Progenitor cells are located in the superficial zone of the articular cartilage, producing lubricin/Prg4 to decrease friction of cartilage surfaces during joint movement. Prg4-positive progenitors are crucial in maintaining the joint's structure and functionality. The disappearance of progenitor cells leads to changes in articular hyaline cartilage over time, subchondral bone abnormalities, and the formation of ectopic ossification. Genetic labeling cell technology has been the main tool used to characterize Prg4-expressing progenitor cells of articular cartilage in vivo through drug injection at different time points. This technology allows for the determination of the origin of progenitor cells and the tracking of their progeny during joint development and cartilage damage. We endeavored to highlight the currently known information about the Prg4-producing cell population in the joint to underline the significance of the role of these cells in the development of articular cartilage and its homeostasis. This review focuses on superficial progenitors in the joint, how they contribute to postnatal articular cartilage formation, their capacity for regeneration, and the consequences of Prg4 deficiency in these cells. We have accumulated information about the Prg4+ cell population of articular cartilage obtained through various elegantly designed experiments using transgenic technologies to identify potential opportunities for further research.


Assuntos
Cartilagem Articular , Proteoglicanas , Células-Tronco , Cartilagem Articular/metabolismo , Cartilagem Articular/citologia , Animais , Humanos , Células-Tronco/metabolismo , Células-Tronco/citologia , Proteoglicanas/metabolismo , Condrogênese , Condrócitos/metabolismo , Condrócitos/citologia , Diferenciação Celular , Regeneração
5.
Int J Mol Sci ; 25(20)2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39456905

RESUMO

Recent years have witnessed significant advancements in the cryopreservation of various tissues and cells, yet several challenges persist. This review evaluates the current state of cryopreservation, focusing on contemporary methods, notable achievements, and ongoing difficulties. Techniques such as slow freezing and vitrification have enabled the successful preservation of diverse biological materials, including embryos and ovarian tissue, marking substantial progress in reproductive medicine and regenerative therapies. These achievements highlight improved post-thaw survival and functionality of cryopreserved samples. However, there are remaining challenges such as ice crystal formation, which can lead to cell damage, and the cryopreservation of larger, more complex tissues and organs. This review also explores the role of cryoprotectants and the importance of optimizing both cooling and warming rates to enhance preservation outcomes. Future research priorities include developing new cryoprotective agents, elucidating the mechanisms of cryoinjury, and refining protocols for preserving complex tissues and organs. This comprehensive overview underscores the transformative potential of cryopreservation in biomedicine, while emphasizing the necessity for ongoing innovation to address existing challenges.


Assuntos
Bancos de Espécimes Biológicos , Criopreservação , Crioprotetores , Vitrificação , Criopreservação/métodos , Humanos , Crioprotetores/farmacologia , Animais , Preservação de Órgãos/métodos
6.
Int J Mol Sci ; 25(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39337502

RESUMO

Currently, an increasing number of patients are undergoing extensive surgeries to restore the mucosa of the gums in the area of recessions. The use of a connective tissue graft from the palate is the gold standard of such surgical treatment, but complications, especially in cases of extensive defects, have led to the development of approaches using xenogeneic collagen matrices and methods to stimulate their regenerative and vasculogenic potential. This study investigated the potential of a xenogeneic scaffold derived from porcine skin Mucoderm and injections of the pCMV-VEGF165 plasmid ('Neovasculgen') to enhance soft gingival tissue volume and vascularization in an experimental model in rabbits. In vitro studies demonstrated the biocompatibility of the matrix and plasmid with gingival mesenchymal stem cells, showing no toxic effects and supporting cell viability and metabolic activity. In the in vivo experiment, the combination of Mucoderm and the pCMV-VEGF165 plasmid (0.12 mg) synergistically promoted tissue proliferation and vascularization. The thickness of soft tissues at the implantation site significantly increased with the combined application (3257.8 ± 1093.5 µm). Meanwhile, in the control group, the thickness of the submucosa was 341.8 ± 65.6 µm, and after the implantation of only Mucoderm, the thickness of the submucosa was 2041.6 ± 496.8 µm. Furthermore, when using a combination of Mucoderm and the pCMV-VEGF165 plasmid, the density and diameter of blood vessels were notably augmented, with a mean value of 226.7 ± 45.9 per 1 mm2 of tissue, while in the control group, it was only 68.3 ± 17.2 per 1 mm2 of tissue. With the application of only Mucoderm, it was 131.7 ± 37.1 per 1 mm2 of tissue, and with only the pCMV-VEGF165 plasmid, it was 145 ± 37.82 per 1 mm2 of the sample. Thus, the use of the pCMV-VEGF165 plasmid ('Neovasculgen') in combination with the xenogeneic collagen matrix Mucoderm potentiated the pro-proliferative effect of the membrane and the pro-vascularization effect of the plasmid. These results indicate the promising potential of this innovative approach for clinical applications in regenerative medicine and dentistry.


Assuntos
Gengiva , Plasmídeos , Fator A de Crescimento do Endotélio Vascular , Animais , Coelhos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Plasmídeos/genética , Plasmídeos/administração & dosagem , Gengiva/metabolismo , Terapia Genética/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Suínos , Neovascularização Fisiológica/genética , Humanos , Masculino
7.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339139

RESUMO

Macrophages are the major players and orchestrators of inflammatory response. Expressed proteins and secreted cytokines have been well studied for two polar macrophage phenotypes-pro-inflammatory M1 and anti-inflammatory regenerative M2, but little is known about how the polarization modulates macrophage functions. In this study, we used biochemical and biophysical methods to compare the functional activity and mechanical properties of activated human macrophages differentiated from monocyte with GM-CSF (M0_GM) and M-CSF (M0_M) and polarized into M1 and M2 phenotypes, respectively. Unlike GM-CSF, which generates dormant cells with low activity, M-CSF confers functional activity on macrophages. M0_M and M2 macrophages had very similar functional characteristics-high reactive oxygen species (ROS) production level, and higher phagocytosis and survival compared to M1, while M1 macrophages showed the highest radical-generating activity but the lowest phagocytosis and survival among all phenotypes. All phenotypes decreased their height upon activation, but only M1 and M2 cells increased in stiffness, which can indicate a decrease in the migration ability of these cells and changes in their interactions with other cells. Our results demonstrated that while mechanical properties differ between M0 and polarized cells, all four phenotypes of monocyte-derived macrophages differ in their functional activities, namely in cytokine secretion, ROS production, and phagocytosis. Within the broad continuum of human macrophages obtained in experimental models and existing in vivo, there is a diversity of phenotypes with varying combinations of both markers and functional activities.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Fator Estimulador de Colônias de Macrófagos , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Fagocitose , Fenótipo
8.
Mol Cell Biochem ; 478(1): 23-37, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35708866

RESUMO

Liver cancer is the sixth common cancer and forth cause of cancer-related death worldwide. Based on usually advanced stages of hepatocellular carcinoma (HCC) at the time of diagnosis, therapeutic options are limited and, in many cases, not effective, and typically result in the tumor recurrence with a poor prognosis. Radioimmunotherapy (RIT) offers a selective internal radiation therapy approach using beta or alpha emitting radionuclides conjugated with tumor-specific monoclonal antibodies (mAbs), or specific selective peptides. When compared to chemotherapy or radiotherapy, radiolabeled mAbs against cancer-associated antigens could provide a high therapeutic and exclusive radiation dose for cancerous cells while decreasing the exposure-induced side effects to healthy tissues. The recent advances in cancer immunotherapy, such as blockade of immune-checkpoint inhibitors (ICIs), has changed the landscape of cancer therapy, and the efficacy of different classes of immunotherapy has been tested in many clinical trials. Taking into account the use of ICIs in the liver tumor microenvironment, combined therapies with different approaches may enhance the outcome in the future clinical studies. With the development of novel immunotherapy treatment options in the recent years, there has been a great deal of information about combining the diverse treatment modalities to boost the effectiveness of immunomodulatory drugs. In this opinion review, we will discuss the recent advancements in RIT. The current status of immunotherapy and internal radiotherapy will be updated, and we will propose novel approaches for the combination of both techniques. Potential target antigens for radioimmunotherapy in Hepatocellular carcinoma (HCC). HCC radioimmunotherapy target antigens are the most specific and commonly accessible antigens on the surface of HCC cells. CTLA-4 ligand and receptor, TAMs, PD-1/PD-L, TIM-3, specific IEXs/TEXs, ROBO1, and cluster of differentiation antigens CD105, CD147 could all be used in HCC radioimmunotherapy. Abbreviations: TAMs, tumor-associated macrophages; CTLA-4, cytotoxic T-lymphocyte associated antigen-4; PD-1, Programmed cell death protein 1; PD-L, programmed death-ligand1; TIM-3, T-cell immunoglobulin (Ig) and mucin-domain containing protein-3; IEXs, immune cell-derived exosomes; TEXs, tumor-derived exosomes.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/metabolismo , Antígeno CTLA-4 , Receptor de Morte Celular Programada 1/metabolismo , Receptor Celular 2 do Vírus da Hepatite A , Radioimunoterapia , Proteínas do Tecido Nervoso , Receptores Imunológicos , Imunoterapia/métodos , Microambiente Tumoral
9.
Soft Matter ; 19(13): 2430-2437, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36930054

RESUMO

Fibrin and its modifications, particularly those with functionalized polyethylene glycol (PEG), remain highly attractive as a biomaterial in drug delivery and regenerative medicine. Despite the extensive knowledge of fibrinogenesis, there is little information on the processes occurring after its modification. Previously, we found structural differences between native fibrin and its conjugates with PEG that allows us to hypothesize that a combination of methods such as terahertz (THz) pulsed spectroscopy and rheology may contribute to the characterization of gelation and reveal the effect of PEG on the polymerization dynamics. Compared to native fibrin, PEGylated fibrins had a homogenously soft surface; PEGylation also led to a significant decrease in the gelation time: from 42.75 min for native fibrin to 31.26 min and 35.09 min for 5 : 1 and 10 : 1 PEGylated fibrin, respectively. It is worth noting that THz pulsed spectroscopy makes it possible to reliably investigate only the polymerization process itself, while it does not allow us to observe statistically significant differences between the distinct PEGylated fibrin gels. The polymerization time constant of native fibrin measured by THz pulsed spectroscopy was 14.4 ± 2.8 min. However, it could not be calculated for PEGylated fibrin because the structural changes were too rapid. These results, together with those previously reported, led us to speculate that PEG-fibrin conjugates formed homogenously distributed highly water-shelled aggregates without bundling compared to native fibrin, ensuring rapid gelation and stabilization of the system without increasing its complexity.


Assuntos
Fibrina , Polietilenoglicóis , Polietilenoglicóis/química , Fibrina/química , Polimerização , Materiais Biocompatíveis/química , Medicina Regenerativa
10.
Int Orthop ; 47(2): 393-403, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36369394

RESUMO

PURPOSE: This study aims to describe and assess the current stage of the artificial intelligence (AI) technology integration in preventive orthopaedics of the knee and hip joints. MATERIALS AND METHODS: The study was conducted in strict compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. Literature databases were searched for articles describing the development and validation of AI models aimed at diagnosing knee or hip joint pathologies or predicting their development or course in patients. The quality of the included articles was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and QUADAS-AI tools. RESULTS: 56 articles were found that meet all the inclusion criteria. We identified two problems that block the full integration of AI into the routine of an orthopaedic physician. The first of them is related to the insufficient amount, variety and quality of data for training, and validation and testing of AI models. The second problem is the rarity of rational evaluation of models, which is why their real quality cannot always be evaluated. CONCLUSION: The vastness and relevance of the studied topic are beyond doubt. Qualitative and optimally validated models exist in all four scopes considered. Additional optimization and confirmation of the models' quality on various datasets are the last technical stumbling blocks for creating usable software and integrating them into the routine of an orthopaedic physician.


Assuntos
Procedimentos Ortopédicos , Ortopedia , Humanos , Inteligência Artificial , Articulação do Quadril , Software
11.
Int J Mol Sci ; 24(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139159

RESUMO

The quality of soft tissue defect regeneration after dental surgeries largely determines their final success. Collagen membranes have been proposed for the healing of such defects, but in some cases, they do not guarantee a sufficient volume of the regenerated tissue and vascularization. For this purpose, lactoferrin, a protein with natural pro-regenerative, anti-inflammatory, and pro-angiogenic activity, can be added to collagen. In this article, we used a semipermeable barrier-assisted electrophoretic deposition (SBA-EPD) method for the production of collagen-lactoferrin membranes. The membrane structure was studied by SEM, and its mechanical properties were shown. The lactoferrin release kinetics were shown by ELISA within 75 h. When tested in vitro, we demonstrated that the collagen-lactoferrin membranes significantly increased the proliferation of keratinocytes (HaCaT) and fibroblasts (977hTERT) compared to blank collagen membranes. In vivo, on the vestibuloplasty and free gingival graft harvesting models, we showed that collagen-lactoferrin membranes decreased the wound inflammation and increased the healing rates and regeneration quality. In some parameters, collagen-lactoferrin membranes outperformed not only blank collagen membranes, but also the commercial membrane Mucograft®. Thus, we proved that collagen-lactoferrin membranes produced by the SBA-EPD method may be a valuable alternative to commercially used membranes for soft tissue regeneration in the oral cavity.


Assuntos
Lactoferrina , Membranas Artificiais , Colágeno/química , Cicatrização
12.
Dev Biol ; 475: 37-53, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33684433

RESUMO

In recent years, the development of 3D organoids has opened new avenues of investigation into development, physiology, and regenerative medicine. Organoid formation and the process of organogenesis share common developmental pathways; thus, our knowledge of developmental biology can help model the complexity of different organs to refine organoids into a more sophisticated platform. The developmental process is strongly dependent on complex networks and communication of cell-cell and cell-matrix interactions among different cell populations and their microenvironment, during embryogenesis. These interactions affect cell behaviors such as proliferation, survival, migration, and differentiation. Co-culture systems within the organoid technology were recently developed and provided the highly physiologically relevant systems. Supportive cells including various types of endothelial and stromal cells provide the proper microenvironment, facilitate organoid assembly, and improve vascularization and maturation of organoids. This review discusses the role of the co-culture systems in organoid generation, with a focus on how knowledge of developmental biology has directed and continues to shape the development of more evolved 3D co-culture system-derived organoids.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas de Cocultura/métodos , Organoides/crescimento & desenvolvimento , Animais , Técnicas de Cultura de Células/tendências , Diferenciação Celular , Técnicas de Cocultura/tendências , Biologia do Desenvolvimento/tendências , Humanos , Organogênese , Organoides/citologia , Organoides/metabolismo
13.
J Cell Physiol ; 237(11): 3984-4000, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36037302

RESUMO

Development is a symphony of cells differentiation in which different signaling pathways are orchestrated at specific times and periods to form mature and functional cells from undifferentiated cells. The similarity of the gene expression profile in malignant and undifferentiated cells is an interesting topic that has been proposed for many years and gave rise to the differentiation-therapy concept, which appears a rational insight and should be reconsidered. Hepatocellular carcinoma (HCC), as the sixth common cancer and the third leading cause of cancer death worldwide, is one of the health-threatening complications in communities where hepatotropic viruses are endemic. Sedentary lifestyle and high intake of calories are other risk factors. HCC is a complex condition in which various dimensions must be addressed, including heterogeneity of cells in the tumor mass, high invasiveness, and underlying diseases that limit the treatment options. Under these restrictions, recognizing, and targeting common signaling pathways during liver development and HCC could expedite to a rational therapeutic approach, reprograming malignant cells to well-differentiated ones in a functional state. Accordingly, in this review, we highlighted the commonalities of signaling pathways in hepatogenesis and hepatocarcinogenesis, and comprised an update on the current status of targeting these pathways in laboratory studies and clinical trials.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Transdução de Sinais
14.
BMC Med ; 20(1): 244, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794549

RESUMO

BACKGROUND: Previous studies assessing the prevalence of COVID-19 sequelae in adults and children were performed in the absence of an agreed definition. We investigated prevalence of post-COVID-19 condition (PCC) (WHO definition), at 6- and 12-months follow-up, amongst previously hospitalised adults and children and assessed risk factors. METHODS: Prospective cohort study of children and adults with confirmed COVID-19 in Moscow, hospitalised between April and August, 2020. Two follow-up telephone interviews, using the International Severe Acute Respiratory and Emerging Infection Consortium survey, were performed at 6 and 12 months after discharge. RESULTS: One thousand thirteen of 2509 (40%) of adults and 360 of 849 (42%) of children discharged participated in both the 6- and 12-month follow-ups. PCC prevalence was 50% (95% CI 47-53) in adults and 20% (95% CI 16-24) in children at 6 months, with decline to 34% (95% CI 31-37) and 11% (95% CI 8-14), respectively, at 12 months. In adults, female sex was associated with PCC at 6- and 12-month follow-up (OR 2.04, 95% CI 1.57 to 2.65) and (OR 2.04, 1.54 to 2.69), respectively. Pre-existing hypertension (OR 1.42, 1.04 to 1.94) was associated with post-COVID-19 condition at 12 months. In children, neurological comorbidities were associated with PCC both at 6 months (OR 4.38, 1.36 to 15.67) and 12 months (OR 8.96, 2.55 to 34.82) while allergic respiratory diseases were associated at 12 months (OR 2.66, 1.04 to 6.47). CONCLUSIONS: Although prevalence of PCC declined one year after discharge, one in three adults and one in ten children experienced ongoing sequelae. In adults, females and persons with pre-existing hypertension, and in children, persons with neurological comorbidities or allergic respiratory diseases are at higher risk of PCC.


Assuntos
COVID-19 , Hipertensão , Adulto , COVID-19/epidemiologia , Criança , Estudos de Coortes , Feminino , Hospitais , Humanos , Moscou/epidemiologia , Alta do Paciente , Prevalência , Estudos Prospectivos , Fatores de Risco
15.
Nat Chem Biol ; 16(3): 278-290, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32080625

RESUMO

Ferroptotic death is the penalty for losing control over three processes-iron metabolism, lipid peroxidation and thiol regulation-that are common in the pro-inflammatory environment where professional phagocytes fulfill their functions and yet survive. We hypothesized that redox reprogramming of 15-lipoxygenase (15-LOX) during the generation of pro-ferroptotic signal 15-hydroperoxy-eicosa-tetra-enoyl-phosphatidylethanolamine (15-HpETE-PE) modulates ferroptotic endurance. Here, we have discovered that inducible nitric oxide synthase (iNOS)/NO•-enrichment of activated M1 (but not alternatively activated M2) macrophages/microglia modulates susceptibility to ferroptosis. Genetic or pharmacologic depletion/inactivation of iNOS confers sensitivity on M1 cells, whereas NO• donors empower resistance of M2 cells to ferroptosis. In vivo, M1 phagocytes, in comparison to M2 phagocytes, exert higher resistance to pharmacologically induced ferroptosis. This resistance is diminished in iNOS-deficient cells in the pro-inflammatory conditions of brain trauma or the tumour microenvironment. The nitroxygenation of eicosatetraenoyl (ETE)-PE intermediates and oxidatively truncated species by NO• donors and/or suppression of NO• production by iNOS inhibitors represent a novel redox mechanism of regulation of ferroptosis in pro-inflammatory conditions.


Assuntos
Ferroptose/fisiologia , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/fisiologia , Morte Celular , Feminino , Ferro/metabolismo , Ferro/fisiologia , Leucotrienos/metabolismo , Peroxidação de Lipídeos/fisiologia , Peróxidos Lipídicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/fisiologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
16.
Soft Matter ; 18(11): 2222-2233, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35229856

RESUMO

Cell viability is the primary integrative parameter used for various purposes, particularly when fabricating tissue equivalents (e.g., using bioprinting or scaffolding techniques), optimizing conditions to cultivate cells, testing chemicals, drugs, and biomaterials, etc. Most of the conventional methods were originally designed for a monolayer (2D) culture; however, 2D approaches fail to adequately assess a tissue-engineered construct's viability and drug effects and recapitulate the host-pathogen interactions and infectivity. This study aims at revealing the influence of particular 3D cell systems' parameters such as the components' concentration, gel thickness, cell density, etc. on the cell viability and applicability of standard assays. Here, we present an approach to achieving adequate and reproducible results on the cell viability in 3D collagen- and fibrin-based systems using the Live/Dead, AlamarBlue, and PicoGreen assays. Our results have demonstrated that a routine precise analysis of 3D systems should be performed using a combination of at least three methods based on different cell properties, e.g. the metabolic activity, proliferative capacity, morphology, etc.


Assuntos
Bioimpressão , Materiais Biocompatíveis/farmacologia , Bioimpressão/métodos , Sobrevivência Celular , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
17.
Brain ; 144(4): 1046-1066, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33893488

RESUMO

Brain metastases are the most common type of brain tumours, harbouring an immune microenvironment that can in principle be targeted via immunotherapy. Elucidating some of the immunological intricacies of brain metastases has opened a therapeutic window to explore the potential of immune checkpoint inhibitors in this globally lethal disease. Multiple lines of evidence suggest that tumour cells hijack the immune regulatory mechanisms in the brain for the benefit of their own survival and progression. Nonetheless, the role of the immune checkpoint in the complex interplays between cancers cells and T cells and in conferring resistance to therapy remains under investigation. Meanwhile, early phase trials with immune checkpoint inhibitors have reported clinical benefit in patients with brain metastases from melanoma and non-small cell lung cancer. In this review, we explore the workings of the immune system in the brain, the immunology of brain metastases, and the current status of immune checkpoint inhibitors in the treatment of brain metastases.


Assuntos
Neoplasias Encefálicas/imunologia , Encéfalo/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Metástase Neoplásica/imunologia , Evasão Tumoral/imunologia , Encéfalo/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/secundário , Humanos , Metástase Neoplásica/tratamento farmacológico , Evasão Tumoral/efeitos dos fármacos
18.
Sensors (Basel) ; 22(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35957464

RESUMO

The development of synthetic biology has enabled massive progress in biotechnology and in approaching research questions from a brand-new perspective. In particular, the design and study of gene regulatory networks in vitro, in vivo, and in silico have played an increasingly indispensable role in understanding and controlling biological phenomena. Among them, it is of great interest to understand how associative learning is formed at the molecular circuit level. Mathematical models are increasingly used to predict the behaviours of molecular circuits. Fernando's model, which is one of the first works in this line of research using the Hill equation, attempted to design a synthetic circuit that mimics Hebbian learning in a neural network architecture. In this article, we carry out indepth computational analysis of the model and demonstrate that the reinforcement effect can be achieved by choosing the proper parameter values. We also construct a novel circuit that can demonstrate forced dissociation, which was not observed in Fernando's model. Our work can be readily used as reference for synthetic biologists who consider implementing circuits of this kind in biological systems.


Assuntos
Redes Reguladoras de Genes , Biologia Sintética , Condicionamento Clássico , Aprendizagem , Redes Neurais de Computação
19.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232468

RESUMO

Damaged hyaline cartilage gradually decreases joint function and growing pain significantly reduces the quality of a patient's life. The clinically approved procedure of autologous chondrocyte implantation (ACI) for treating knee cartilage lesions has several limits, including the absence of healthy articular cartilage tissues for cell isolation and difficulties related to the chondrocyte expansion in vitro. Today, various ACI modifications are being developed using autologous chondrocytes from alternative sources, such as the auricles, nose and ribs. Adult stem cells from different tissues are also of great interest due to their less traumatic material extraction and their innate abilities of active proliferation and chondrogenic differentiation. According to the different adult stem cell types and their origin, various strategies have been proposed for stem cell expansion and initiation of their chondrogenic differentiation. The current review presents the diversity in developing applied techniques based on autologous adult stem cell differentiation to hyaline cartilage tissue and targeted to articular cartilage damage therapy.


Assuntos
Células-Tronco Adultas , Cartilagem Articular , Adulto , Condrócitos/metabolismo , Condrogênese , Humanos , Cartilagem Hialina , Transplante Autólogo
20.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430272

RESUMO

Osteoarthritis (OA) affects over 250 million people worldwide and despite various existing treatment strategies still has no cure. It is a multifactorial disease characterized by cartilage loss and low-grade synovial inflammation. Focusing on these two targets together could be the key to developing currently missing disease-modifying OA drugs (DMOADs). This review aims to discuss the latest cell-free techniques applied in cartilage tissue regeneration, since they can provide a more controllable approach to inflammation management than the cell-based ones. Scaffolds, extracellular vesicles, and nanocarriers can be used to suppress inflammation, but they can also act as immunomodulatory agents. This is consistent with the latest tissue engineering paradigm, postulating a moderate, controllable inflammatory reaction to be beneficial for tissue remodeling and successful regeneration.


Assuntos
Vesículas Extracelulares , Osteoartrite , Humanos , Inflamação/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Nanotecnologia , Cartilagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA