Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Transplant ; 23(12): 1922-1938, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37295720

RESUMO

In lung transplantation, antibody-mediated rejection (AMR) diagnosed using the International Society for Heart and Lung Transplantation criteria is uncommon compared with other organs, and previous studies failed to find molecular AMR (ABMR) in lung biopsies. However, understanding of ABMR has changed with the recognition that ABMR in kidney transplants is often donor-specific antibody (DSA)-negative and associated with natural killer (NK) cell transcripts. We therefore searched for a similar molecular ABMR-like state in transbronchial biopsies using gene expression microarray results from the INTERLUNG study (#NCT02812290). After optimizing rejection-selective transcript sets in a training set (N = 488), the resulting algorithms separated an NK cell-enriched molecular rejection-like state (NKRL) from T cell-mediated rejection (TCMR)/Mixed in a test set (N = 488). Applying this approach to all 896 transbronchial biopsies distinguished 3 groups: no rejection, TCMR/Mixed, and NKRL. Like TCMR/Mixed, NKRL had increased expression of all-rejection transcripts, but NKRL had increased expression of NK cell transcripts, whereas TCMR/Mixed had increased effector T cell and activated macrophage transcripts. NKRL was usually DSA-negative and not recognized as AMR clinically. TCMR/Mixed was associated with chronic lung allograft dysfunction, reduced one-second forced expiratory volume at the time of biopsy, and short-term graft failure, but NKRL was not. Thus, some lung transplants manifest a molecular state similar to DSA-negative ABMR in kidney and heart transplants, but its clinical significance must be established.


Assuntos
Transplante de Rim , Transplante de Pulmão , Células Matadoras Naturais , Transplante de Rim/efeitos adversos , Rim/patologia , Biópsia , Transplante de Pulmão/efeitos adversos , Anticorpos , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/etiologia
2.
Am J Transplant ; 22(4): 1054-1072, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34850543

RESUMO

Transplanted lungs suffer worse outcomes than other organ transplants with many developing chronic lung allograft dysfunction (CLAD), diagnosed by physiologic changes. Histology of transbronchial biopsies (TBB) yields little insight, and the molecular basis of CLAD is not defined. We hypothesized that gene expression in TBBs would reveal the nature of CLAD and distinguish CLAD from changes due simply to time posttransplant. Whole-genome mRNA profiling was performed with microarrays in 498 prospectively collected TBBs from the INTERLUNG study, 90 diagnosed as CLAD. Time was associated with increased expression of inflammation genes, for example, CD1E and immunoglobulins. After correcting for time, CLAD manifested not as inflammation but as parenchymal response-to-wounding, with increased expression of genes such as HIF1A, SERPINE2, and IGF1 that are increased in many injury and disease states and cancers, associated with development, angiogenesis, and epithelial response-to-wounding in pathway analysis. Fibrillar collagen genes were increased in CLAD, indicating matrix changes, and normal transcripts were decreased-dedifferentiation. Gene-based classifiers predicted CLAD with AUC 0.70 (no time-correction) and 0.87 (time-corrected). CLAD related gene sets and classifiers were strongly prognostic for graft failure and correlated with CLAD stage. Thus, in TBBs, molecular changes indicate that CLAD primarily reflects severe parenchymal injury-induced changes and dedifferentiation.


Assuntos
Transplante de Pulmão , Serpina E2 , Aloenxertos , Biópsia , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/genética , Pulmão , Transplante de Pulmão/efeitos adversos , Estudos Retrospectivos
3.
Am J Transplant ; 20(4): 954-966, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31679176

RESUMO

Diagnosing lung transplant rejection currently depends on histologic assessment of transbronchial biopsies (TBB) with limited reproducibility and considerable risk of complications. Mucosal biopsies are safer but not histologically interpretable. Microarray-based diagnostic systems for TBBs and other transplants suggest such systems could assess mucosal biopsies as well. We studied 243 mucosal biopsies from the third bronchial bifurcation (3BMBs) collected from seven centers and classified them using unsupervised machine learning algorithms. Using the expression of a set of rejection-associated transcripts annotated in kidneys and validated in hearts and lung transplant TBBs, the algorithms identified and scored major rejection and injury-related phenotypes in 3BMBs without need for labeled training data. No rejection or injury, rejection, late inflammation, and recent injury phenotypes were thus scored in new 3BMBs. The rejection phenotype correlated with IFNG-inducible transcripts, the hallmarks of rejection. Progressive atrophy-related changes reflected by the late inflammation phenotype in 3BMBs suggest widespread time-dependent airway deterioration, which was especially pronounced after two years posttransplant. Thus molecular assessment of 3BMBs can detect rejection in a previously unusable biopsy format with potential utility in patients with severe lung dysfunction where TBB is not possible and provide unique insights into airway deterioration. ClinicalTrials.gov NCT02812290.


Assuntos
Rejeição de Enxerto , Transplante de Pulmão , Biópsia , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/etiologia , Humanos , Pulmão , Transplante de Pulmão/efeitos adversos , Reprodutibilidade dos Testes
4.
J Heart Lung Transplant ; 41(12): 1689-1699, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36163162

RESUMO

BACKGROUND: Many lung transplants fail due to chronic lung allograft dysfunction (CLAD). We recently showed that transbronchial biopsies (TBBs) from CLAD patients manifest severe parenchymal injury and dedifferentiation, distinct from time-dependent changes. The present study explored time-selective and CLAD-selective transcripts in mucosal biopsies from the third bronchial bifurcation (3BMBs), compared to those in TBBs. METHODS: We used genome-wide microarray measurements in 324 3BMBs to identify CLAD-selective changes as well as time-dependent changes and develop a CLAD classifier. CLAD-selective transcripts were identified with linear models for microarray data (limma) and were used to build an ensemble of 12 classifiers to predict CLAD. Hazard models and random forests were then used to predict the risk of graft loss using the CLAD classifier, transcript sets associated with rejection, injury, and time. RESULTS: T cell-mediated rejection and donor-specific antibody were increased in CLAD 3BMBs but most had no rejection. Like TBBs, 3BMBs showed a time-dependent increase in transcripts expressed in inflammatory cells that was not associated with CLAD or survival. Also like TBBs, the CLAD-selective transcripts in 3BMBs reflected severe parenchymal injury and dedifferentiation, not inflammation or rejection. While 3BMBs and TBBs did not overlap in their top 20 CLAD-selective transcripts, many CLAD-selective transcripts were significantly increased in both for example LOXL1, an enzyme controlling matrix remodeling. In Cox models for one-year survival, the 3BMB CLAD-selective transcripts and CLAD classifier predicted graft loss and correlated with CLAD stage. Many 3BMB CLAD-selective transcripts were also increased by injury in kidney transplants and correlated with decreased kidney survival, including LOXL1. CONCLUSIONS: Mucosal and transbronchial biopsies from CLAD patients reveal a diffuse molecular injury and dedifferentiation state that impacts prognosis and correlates with the physiologic disturbances. CLAD state in lung transplants shares features with failing kidney transplants, indicating elements shared by the injury responses of distressed organs.


Assuntos
Rejeição de Enxerto , Transplante de Pulmão , Humanos , Rejeição de Enxerto/genética , Estudos Retrospectivos , Pulmão , Aloenxertos , Mucosa
5.
J Heart Lung Transplant ; 38(5): 504-513, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773443

RESUMO

BACKGROUND: Improved understanding of lung transplant disease states is essential because failure rates are high, often due to chronic lung allograft dysfunction. However, histologic assessment of lung transplant transbronchial biopsies (TBBs) is difficult and often uninterpretable even with 10 pieces. METHODS: We prospectively studied whether microarray assessment of single TBB pieces could identify disease states and reduce the amount of tissue required for diagnosis. By following strategies successful for heart transplants, we used expression of rejection-associated transcripts (annotated in kidney transplant biopsies) in unsupervised machine learning to identify disease states. RESULTS: All 242 single-piece TBBs produced reliable transcript measurements. Paired TBB pieces available from 12 patients showed significant similarity but also showed some sampling variance. Alveolar content, as estimated by surfactant transcript expression, was a source of sampling variance. To offset sampling variation, for analysis, we selected 152 single-piece TBBs with high surfactant transcripts. Unsupervised archetypal analysis identified 4 idealized phenotypes (archetypes) and scored biopsies for their similarity to each: normal; T-cell‒mediated rejection (TCMR; T-cell transcripts); antibody-mediated rejection (ABMR)-like (endothelial transcripts); and injury (macrophage transcripts). Molecular TCMR correlated with histologic TCMR. The relationship of molecular scores to histologic ABMR could not be assessed because of the paucity of ABMR in this population. CONCLUSIONS: Molecular assessment of single-piece TBBs can be used to classify lung transplant biopsies and correlated with rejection histology. Two or 3 pieces for each TBB will probably be needed to offset sampling variance.


Assuntos
Transplante de Rim , Transplante de Pulmão , Biópsia , Rejeição de Enxerto , Humanos , Patologia Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA