Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(28): e2221961120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399376

RESUMO

Changes in phenology in response to ongoing climate change have been observed in numerous taxa around the world. Differing rates of phenological shifts across trophic levels have led to concerns that ecological interactions may become increasingly decoupled in time, with potential negative consequences for populations. Despite widespread evidence of phenological change and a broad body of supporting theory, large-scale multitaxa evidence for demographic consequences of phenological asynchrony remains elusive. Using data from a continental-scale bird-banding program, we assess the impact of phenological dynamics on avian breeding productivity in 41 species of migratory and resident North American birds breeding in and around forested areas. We find strong evidence for a phenological optimum where breeding productivity decreases in years with both particularly early or late phenology and when breeding occurs early or late relative to local vegetation phenology. Moreover, we demonstrate that landbird breeding phenology did not keep pace with shifts in the timing of vegetation green-up over a recent 18-y period, even though avian breeding phenology has tracked green-up with greater sensitivity than arrival for migratory species. Species whose breeding phenology more closely tracked green-up tend to migrate shorter distances (or are resident over the entire year) and breed earlier in the season. These results showcase the broadest-scale evidence yet of the demographic impacts of phenological change. Future climate change-associated phenological shifts will likely result in a decrease in breeding productivity for most species, given that bird breeding phenology is failing to keep pace with climate change.


Assuntos
Aves Canoras , Animais , Mudança Climática , Estações do Ano , América do Norte , Demografia
2.
Glob Chang Biol ; 30(1): e17019, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37987241

RESUMO

Correlative species distribution models are widely used to quantify past shifts in ranges or communities, and to predict future outcomes under ongoing global change. Practitioners confront a wide range of potentially plausible models for ecological dynamics, but most specific applications only consider a narrow set. Here, we clarify that certain model structures can embed restrictive assumptions about key sources of forecast uncertainty into an analysis. To evaluate forecast uncertainties and our ability to explain community change, we fit and compared 39 candidate multi- or joint species occupancy models to avian incidence data collected at 320 sites across California during the early 20th century and resurveyed a century later. We found massive (>20,000 LOOIC) differences in within-time information criterion across models. Poorer fitting models omitting multivariate random effects predicted less variation in species richness changes and smaller contemporary communities, with considerable variation in predicted spatial patterns in richness changes across models. The top models suggested avian environmental associations changed across time, contemporary avian occupancy was influenced by previous site-specific occupancy states, and that both latent site variables and species associations with these variables also varied over time. Collectively, our results recapitulate that simplified model assumptions not only impact predictive fit but may mask important sources of forecast uncertainty and mischaracterize the current state of system understanding when seeking to describe or project community responses to global change. We recommend that researchers seeking to make long-term forecasts prioritize characterizing forecast uncertainty over seeking to present a single best guess. To do so reliably, we urge practitioners to employ models capable of characterizing the key sources of forecast uncertainty, where predictors, parameters and random effects may vary over time or further interact with previous occurrence states.


Assuntos
Mudança Climática , Clima , Animais , Incerteza , Aves/fisiologia , Previsões
3.
Ecol Lett ; 26(4): 658-673, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36798988

RESUMO

Reports of declines in abundance and biomass of insects and other invertebrates from around the world have raised concerns about food limitation that could have profound impacts for insectivorous species. Food availability can clearly affect species; however, there is considerable variation among studies in whether this effect is evident, and thus a lack of clarity over the generality of the relationship. To understand how decreased food availability due to invertebrate declines will affect bird populations, we conducted a systematic review and used meta-analytic structural equation modelling, which allowed us to treat our core variables of interest as latent variables estimated by the diverse ways in which researchers measure fecundity and chick body condition. We found a moderate positive effect of food availability on chick body condition and a strong positive effect on reproductive success. We also found a negative relationship between chick body condition and reproductive success. Our results demonstrate that food is generally a limiting factor for breeding songbirds. Our analysis also provides evidence for a consistent trade-off between chick body condition and reproductive success, demonstrating the complexity of trophic dynamics important for these vital rates.


Assuntos
Aves Canoras , Animais , Alimentos , Insetos , Reprodução , Fertilidade
4.
Glob Chang Biol ; 29(2): 341-354, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36268831

RESUMO

Advances in spring migratory phenology comprise some of the most well-documented evidence for the impacts of climate change on birds. Nevertheless, surprisingly little research has investigated whether birds are shifting their migratory phenology equally across sex and age classes-a question critical to understanding the potential for trophic mismatch. We used 60 years of bird banding data across North America-comprising over 4 million captures in total-to investigate both spring and fall migratory phenology for a total of 98 bird species across sex and age classes, with the exact numbers of species for each analysis depending on season-specific data availability. Consistent with protandry, in spring (n = 89 species), adult males were the first to arrive and immature females were the last to arrive. In fall (n = 98), there was little difference between sexes, but adults tended to depart earlier than juveniles. Over 60 years, adult males advanced their phenology the fastest (-0.84 days per decade, 95 CrI = -1.22 to -0.47, n = 36), while adult and immature females advanced at a slower pace, causing the gap in male and female arrival times to widen over time. In the fall, there was no overall trend in phenology by age or sex (n = 57), driven in part by high interspecific variation related to breeding and molt strategies. Our results indicate consistent and predictable age- and sex-based differences in the rates at which species' springtime phenology is shifting. The growing gap between male and female migratory arrival indicates sex-based plasticity in adaptation to climate change that has strong potential to negatively impact current and future population trends.


Assuntos
Migração Animal , Aves , Animais , Feminino , Masculino , Estações do Ano , Mudança Climática , América do Norte
5.
Ecol Appl ; 33(4): e2853, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36995347

RESUMO

Spatial and temporal variation in fire characteristics-termed pyrodiversity-are increasingly recognized as important factors that structure wildlife communities in fire-prone ecosystems, yet there have been few attempts to incorporate pyrodiversity or post-fire habitat dynamics into predictive models of animal distributions and abundance to support post-fire management. We use the black-backed woodpecker-a species associated with burned forests-as a case study to demonstrate a pathway for incorporating pyrodiversity into wildlife habitat assessments for adaptive management. Employing monitoring data (2009-2019) from post-fire forests in California, we developed three competing occupancy models describing different hypotheses for habitat associations: (1) a static model representing an existing management tool, (2) a temporal model accounting for years since fire, and (3) a temporal-landscape model which additionally incorporates emerging evidence from field studies about the influence of pyrodiversity. Evaluating predictive ability, we found superior support for the temporal-landscape model, which showed a positive relationship between occupancy and pyrodiversity and interactions between habitat associations and years since fire. We incorporated the new temporal-landscape model into an RShiny application to make this decision-support tool accessible to decision-makers.


Assuntos
Ecossistema , Incêndios , Animais , Animais Selvagens , Florestas , Aves
6.
Glob Chang Biol ; 28(16): 4989-5005, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35672922

RESUMO

Species' response to rapid climate change can be measured through shifts in timing of recurring biological events, known as phenology. The Gulf of Maine is one of the most rapidly warming regions of the ocean, and thus an ideal system to study phenological and biological responses to climate change. A better understanding of climate-induced changes in phenology is needed to effectively and adaptively manage human-wildlife conflicts. Using data from a 20+ year marine mammal observation program, we tested the hypothesis that the phenology of large whale habitat use in Cape Cod Bay has changed and is related to regional-scale shifts in the thermal onset of spring. We used a multi-season occupancy model to measure phenological shifts and evaluate trends in the date of peak habitat use for North Atlantic right (Eubalaena glacialis), humpback (Megaptera novaeangliae), and fin (Balaenoptera physalus) whales. The date of peak habitat use shifted by +18.1 days (0.90 days/year) for right whales and +19.1 days (0.96 days/year) for humpback whales. We then evaluated interannual variability in peak habitat use relative to thermal spring transition dates (STD), and hypothesized that right whales, as planktivorous specialist feeders, would exhibit a stronger response to thermal phenology than fin and humpback whales, which are more generalist piscivorous feeders. There was a significant negative effect of western region STD on right whale habitat use, and a significant positive effect of eastern region STD on fin whale habitat use indicating differential responses to spatial seasonal conditions. Protections for threatened and endangered whales have been designed to align with expected phenology of habitat use. Our results show that whales are becoming mismatched with static seasonal management measures through shifts in their timing of habitat use, and they suggest that effective management strategies may need to alter protections as species adapt to climate change.


Assuntos
Baleia Comum , Jubarte , Infecções Sexualmente Transmissíveis , Animais , Ecossistema , Baleia Comum/fisiologia , Humanos , Jubarte/fisiologia , Estações do Ano
7.
J Exp Biol ; 225(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35617822

RESUMO

Many species have not tracked their thermal niches upslope as predicted by climate change, potentially because higher elevations are associated with abiotic challenges beyond temperature. To better predict whether organisms can continue to move upslope with rising temperatures, we need to understand their physiological performance when subjected to novel high-elevation conditions. Here, we captured Anna's hummingbirds - a species expanding their elevational distribution in concordance with rising temperatures - from across their current elevational distribution and tested their physiological response to novel abiotic conditions. First, at a central aviary within their current elevational range, we measured hovering metabolic rate to assess their response to oxygen conditions and torpor use to assess their response to thermal conditions. Second, we transported the hummingbirds to a location 1200 m above their current elevational range limit to test for an acute response to novel oxygen and thermal conditions. Hummingbirds exhibited lower hovering metabolic rates above their current elevational range limit, suggesting lower oxygen availability may reduce performance after an acute exposure. Alternatively, hummingbirds showed a facultative response to thermal conditions by using torpor more frequently and for longer. Finally, post-experimental dissection found that hummingbirds originating from higher elevations within their range had larger hearts, a potential plastic response to hypoxic environments. Overall, our results suggest lower oxygen availability and low air pressure may be difficult challenges to overcome for hummingbirds shifting upslope as a consequence of rising temperatures, especially if there is little to no long-term acclimatization. Future studies should investigate how chronic exposure and acclimatization to novel conditions, as opposed to acute experiments, may result in alternative outcomes that help organisms better respond to abiotic challenges associated with climate-induced range shifts.


Assuntos
Voo Animal , Torpor , Animais , Aves/fisiologia , Voo Animal/fisiologia , Oxigênio , Temperatura
8.
Ecol Appl ; 32(6): e2608, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35366031

RESUMO

Habitat loss disrupts species interactions through local extinctions, potentially orphaning species that depend on interacting partners, via mutualisms or commensalisms, and increasing secondary extinction risk. Orphaned species may become functionally or secondarily extinct, increasing the severity of the current biodiversity crisis. While habitat destruction is a major cause of biodiversity loss, the number of secondary extinctions is largely unknown. We investigate the relationship between habitat loss, orphaned species, and bipartite network properties. Using a real seed dispersal network, we simulate habitat loss to estimate the rate at which species are orphaned. To be able to draw general conclusions, we also simulate habitat loss in synthetic networks to quantify how changes in network properties affect orphan rates across broader parameter space. Both real and synthetic network simulations show that even small amounts of habitat loss can cause up to 10% of species to be orphaned. More area loss, less connected networks, and a greater disparity in the species richness of the network's trophic levels generally result in more orphaned species. As habitat is lost to land-use conversion and climate change, more orphaned species increase the loss of community-level and ecosystem functions. However, the potential severity of repercussions ranges from minimal (no species orphaned) to catastrophic (up to 60% of species within a network orphaned). Severity of repercussions also depends on how much the interaction richness and intactness of the community affects the degree of redundancy within networks. Orphaned species could add substantially to the loss of ecosystem function and secondary extinction worldwide.


Assuntos
Ecossistema , Extinção Biológica , Biodiversidade , Mudança Climática
9.
Ecol Appl ; 31(8): e02437, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34374155

RESUMO

Widespread woody encroachment is a prominent concern for savanna systems as it is often accompanied by losses in productivity and biodiversity. Extensive ecosystem-level work has advanced our understanding of its causes and consequences. However, there is still debate over whether local management can override regional and global drivers of woody encroachment, and it remains largely unknown how encroachment influences woody community assemblages. Here, we examined species-level changes in woody plant distributions and size structure from the late 1980s to the late 2000s based on spatially intensive ground-based surveys across Kruger National Park, South Africa. This study region spans broad gradients in rainfall, soil texture, fire frequency, elephant density, and other topographic variables. Species-level changes in frequency of occurrence and size class proportion reflected widespread woody encroachment primarily by Dichrostachys cinerea and Combretum apiculatum, and a loss of large trees mostly of Sclerocarya birrea and Acacia nigrescens. Environmental variables determining woody species distributions across Kruger varied among species but did not change substantially between two sampling times, indicating that woody encroachers were thickening within their existing ranges. Overall, more areas across Kruger were found to have an increased number of common woody species through time, which indicated an increase in stem density. These areas were generally associated with decreasing fire frequency and rainfall but increasing elephant density. Our results suggest that woody encroachment is a widespread but highly variable trend across landscapes in Kruger National Park and potentially reflects an erosion of local heterogeneity in woody community assemblages. Many savanna managers, including in Kruger, aim to manage for heterogeneity in order to promote biodiversity, where homogenization of vegetation structure counters this specific goal. Increasing fire frequency has some potential as a local intervention. However, many common species increased in commonness even under near-constant disturbance conditions, which likely limits the potential for managing woody encroachment in the face of drivers beyond the scope of local control. Regular field sampling coupled with targeted fire management will enable more accurate monitoring of the rate of encroachment intensification.


Assuntos
Ecossistema , Incêndios , Pradaria , Árvores , Madeira
10.
J Anim Ecol ; 90(5): 1317-1327, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33638165

RESUMO

Pyrodiversity, defined as variation in fire history and characteristics, has been shown to catalyse post-fire biodiversity in a variety of systems. However, the demographic and behavioural mechanisms driving the responses of individual species to pyrodiversity remain largely unexplored. We used a model post-fire specialist, the black-backed woodpecker (Picoides arcticus), to examine the relationship between fire characteristics and juvenile survival while controlling for confounding factors. We radio-tracked fledgling black-backed woodpeckers in burned forests of California and Washington, USA, and derived information on habitat characteristics using ground surveys and satellite data. We used hierarchical Bayesian mixed-effects models to determine the factors that influence both fledgling and annual juvenile survival, and we tested for effects of fledgling age on movement rates. Burn severity strongly affected fledgling survival, with lower survival in patches created by high-severity fire compared to patches burned at medium to low severity or left unburned. Time since leaving the nest was also a strong predictor of fledgling survival, annual juvenile survival and fledgling movement rates. Our results support the role of habitat complementation in generating species-specific benefits from variation in spatial fire characteristics-one axis of pyrodiversity-and highlight the importance of this variation under shifting fire regimes. High-severity fire provides foraging and nesting sites that support the needs of adult black-backed woodpeckers, but fledgling survival is greater in areas burned at lower severity. By linking breeding and foraging habitat with neighbouring areas of reduced predation risk, pyrodiversity may enhance the survival and persistence of animals that thrive in post-fire habitat.


Assuntos
Queimaduras , Incêndios , Animais , Teorema de Bayes , Ecossistema , Florestas , Washington
11.
Proc Biol Sci ; 287(1941): 20202122, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33323085

RESUMO

Phenotypic plasticity plays a critical role in adaptation to novel environments. Behavioural plasticity enables more rapid responses to unfamiliar conditions than evolution by natural selection. Urban ecosystems are one such novel environment in which behavioural plasticity has been documented. However, whether such plasticity is adaptive, and if plasticity is convergent among urban populations, is poorly understood. We studied the nesting biology of an 'urban-adapter' species, the dark-eyed junco (Junco hyemalis), to understand the role of plasticity in adapting to city life. We examined (i) whether novel nesting behaviours are adaptive, (ii) whether pairs modify nest characteristics in response to prior outcomes, and (iii) whether two urban populations exhibit similar nesting behaviour. We monitored 170 junco nests in urban Los Angeles and compared our results with prior research on 579 nests from urban San Diego. We found that nests placed in ecologically novel locations (off-ground and on artificial surfaces) increased fitness, and that pairs practiced informed re-nesting in site selection. The Los Angeles population more frequently nested off-ground than the San Diego population and exhibited a higher success rate. Our findings suggest that plasticity facilitates adaptation to urban environments, and that the drivers behind novel nesting behaviours are complex and multifaceted.


Assuntos
Adaptação Fisiológica , Aves , Comportamento de Nidação , Animais , Cidades , Ecossistema , Los Angeles , Seleção Genética
12.
Proc Natl Acad Sci U S A ; 114(49): 12976-12981, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29133415

RESUMO

Species respond to climate change in two dominant ways: range shifts in latitude or elevation and phenological shifts of life-history events. Range shifts are widely viewed as the principal mechanism for thermal niche tracking, and phenological shifts in birds and other consumers are widely understood as the principal mechanism for tracking temporal peaks in biotic resources. However, phenological and range shifts each present simultaneous opportunities for temperature and resource tracking, although the possible role for phenological shifts in thermal niche tracking has been widely overlooked. Using a canonical dataset of Californian bird surveys and a detectability-based approach for quantifying phenological signal, we show that Californian bird communities advanced their breeding phenology by 5-12 d over the last century. This phenological shift might track shifting resource peaks, but it also reduces average temperatures during nesting by over 1 °C, approximately the same magnitude that average temperatures have warmed over the same period. We further show that early-summer temperature anomalies are correlated with nest success in a continental-scale database of bird nests, suggesting avian thermal niches might be broadly limited by temperatures during nesting. These findings outline an adaptation surface where geographic range and breeding phenology respond jointly to constraints imposed by temperature and resource phenology. By stabilizing temperatures during nesting, phenological shifts might mitigate the need for range shifts. Global change ecology will benefit from further exploring phenological adjustment as a potential mechanism for thermal niche tracking and vice versa.


Assuntos
Aves/fisiologia , Aclimatação , Migração Animal , Animais , California , Mudança Climática , Comportamento de Nidação , Estações do Ano , Temperatura , Estados Unidos
13.
Proc Biol Sci ; 285(1874)2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29514971

RESUMO

Longstanding theory predicts that competitive interactions set species' range limits in relatively aseasonal, species-rich regions, while temperature limits distributions in more seasonal, species-poor areas. More recent theory holds that species evolve narrow physiological tolerances in aseasonal regions, with temperature being an important determining factor in such zones. We tested how abiotic (temperature) and biotic (competition) factors set range limits and structure bird communities along strong, opposing, temperature-seasonality and species-richness gradients in the Himalayas, in two regions separated by 1500 km. By examining the degree to which seasonal elevational migration conserves year-round thermal niches across species, we show that species in the relatively aseasonal and speciose east are more constrained by temperature compared with species in the highly seasonal west. We further show that seasonality has a profound effect on the strength of competition between congeneric species. Competition appears to be stronger in winter, a period of resource scarcity in the Himalayas, in both the east and the west, with similarly sized eastern species more likely to segregate in thermal niche space in winter. Our results indicate that rather than acting in isolation, abiotic and biotic factors mediate each other to structure ecological communities.


Assuntos
Distribuição Animal , Biota , Aves/fisiologia , Animais , Evolução Biológica , Índia , Temperatura
14.
Ecology ; 99(9): 2103-2112, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29944742

RESUMO

Incorporating imperfect detection when estimating species richness has become commonplace in the past decade. However, the question of how imperfect detection of species affects estimates of functional and phylogenetic community structure remains untested. We used long-term counts of breeding bird species that were detected at least once on islands in a land-bridge island system, and employed multi-species occupancy models to assess the effects of imperfect detection of species on estimates of bird diversity and community structure by incorporating species traits and phylogenies. Our results showed that taxonomic, functional, and phylogenetic diversity were all underestimated significantly as a result of species' imperfect detection, with taxonomic diversity showing the greatest bias. The functional and phylogenetic structure calculated from observed communities were both more clustered than those from the detection-corrected communities due to missed distinct species. The discrepancy between observed and estimated diversity differed according to the measure of biodiversity employed. Our study demonstrates the importance of accounting for species' imperfect detection in biodiversity studies, especially for functional and phylogenetic community ecology, and when attempting to infer community assembly processes. With datasets that allow for detection-corrected community structure, we can better estimate diversity and infer the underlying mechanisms that structure community assembly, and thus make reliable management decisions for the conservation of biodiversity.


Assuntos
Biodiversidade , Aves/classificação , Animais , Ecologia , Ilhas , Filogenia
15.
J Anim Ecol ; 87(5): 1484-1496, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29782655

RESUMO

Fire creates challenges and opportunities for wildlife through rapid destruction, modification and creation of habitat. Fire has spatially variable effects on landscapes; however, for species that benefit from the ephemeral resource patches created by fire, it is critical to understand characteristics of fires that promote postfire colonization and persistence and the spatial scales on which they operate. Using a model postfire specialist, the black-backed woodpecker (Picoides arcticus), we examined how colonization and persistence varied across two spatial scales as a function of four characteristics of fire regimes-fire severity, fire size, fire ignition date and number of years since fire. We modelled black-backed woodpecker colonization and persistence using data from 108 recently burned forests in the Sierra Nevada and southern Cascades ecoregions of California, USA, that we monitored for up to 10 years following fire. We employed a novel, spatially hierarchical, dynamic occupancy framework which differentiates colonization and persistence at two spatial scales: across fires and within fires. We found strong effects of fire characteristics on dynamic rates, with colonization and persistence declining across both spatial scales with increasing years since fire. Additionally, at sites within fires, colonization decreased with fire size and increased with fire severity and for fires with later ignition dates. Our results support the notion that different aspects of a species' environment are important for population processes at different spatial scales. As habitat quality is ephemeral for any given postfire area, our results illustrate the importance of time since fire in structuring occupancy at the fire level, with other characteristics of fires playing larger roles in determining abundance within individual fires. Our results contribute to the broader understanding of how variation in fire characteristics influences the colonization and persistence of species using ephemeral habitats, which is necessary for conserving and promoting postfire biodiversity in the context of rapidly shifting fire regimes.


Assuntos
Incêndios , Animais , California , Ecossistema , Florestas , Nevada
16.
Ecol Lett ; 20(9): 1148-1157, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28699209

RESUMO

Species richness has long been used as an indicator of ecosystem functioning and health. Global richness is declining, but it is unclear whether sub-global trends differ. Regional trends are especially understudied, with most focused on island regions where richness is strongly impacted by novel colonisations. We addressed this knowledge gap by testing for multi-decade trends in species richness in nine open marine regions around North America (197 region-years) while accounting for imperfect observations and grounding our findings in species-level range dynamics. We found positive richness trends in eight of nine regions, four of which were statistically significant. Species' range sizes generally contracted pre-extinction and expanded post-colonisation, but the ranges of transient species expanded over the long-term, slowly increasing their regional retention and driving increasing richness. These results provide more evidence that sub-global richness trends are stable or increasing, and highlight the utility of range size for understanding richness dynamics.


Assuntos
Biodiversidade , Ecossistema , Ilhas , América do Norte
17.
Ecology ; 98(2): 337-348, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27869987

RESUMO

There is clear evidence that species' ranges along environmental gradients are constrained by both biotic and abiotic factors, yet their relative importance in structuring realized distributions remains uncertain. We surveyed breeding bird communities while collecting in situ temperature and vegetation data along five elevational transects in the Himalayas differing in temperature variability, habitat zonation, and bird richness in order to disentangle temperature, habitat, and congeneric competition as mechanisms structuring elevational ranges. Our results from species' abundance models representing these three mechanisms differed markedly from previous, foundational research in the tropics. Contrary to general expectations, we found little evidence for competition as a major determinant of range boundaries, with congeneric species limiting only 12% of ranges. Instead, temperature and habitat were found to structure the majority of species' distributions, limiting 48 and 40% of ranges, respectively. Our results suggest that different mechanisms may structure species ranges in the temperate Himalayas compared to tropical systems. Despite recent evidence suggesting temperate species have broader thermal tolerances than tropical species, our findings reinforce the notion that the abiotic environment has significant control over the distributions of temperate species.


Assuntos
Biodiversidade , Aves , Ecossistema , Temperatura , Animais , Dinâmica Populacional
18.
Conserv Biol ; 31(2): 394-405, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28146342

RESUMO

The trade in wild animals involves one-third of the world's bird species and thousands of other vertebrate species. Although a few species are imperiled as a result of the wildlife trade, the lack of field studies makes it difficult to gauge how serious a threat it is to biodiversity. We used data on changes in bird abundances across space and time and information from trapper interviews to evaluate the effects of trapping wild birds for the pet trade in Sumatra, Indonesia. To analyze changes in bird abundance over time, we used data gathered over 14 years of repeated bird surveys in a 900-ha forest in southern Sumatra. In northern Sumatra, we surveyed birds along a gradient of trapping accessibility, from the edge of roads to 5 km into the forest interior. We interviewed 49 bird trappers in northern Sumatra to learn which species they targeted and how far they went into the forest to trap. We used prices from Sumatran bird markets as a proxy for demand and, therefore, trapping pressure. Market price was a significant predictor of species declines over time in southern Sumatra (e.g., given a market price increase of approximately $50, the log change in abundance per year decreased by 0.06 on average). This result indicates a link between the market-based pet trade and community-wide species declines. In northern Sumatra, price and change in abundance were not related to remoteness (distance from the nearest road). However, based on our field surveys, high-value species were rare or absent across this region. The median maximum distance trappers went into the forest each day was 5.0 km. This suggests that trapping has depleted bird populations across our remoteness gradient. We found that less than half of Sumatra's remaining forests are >5 km from a major road. Our results suggest that trapping for the pet trade threatens birds in Sumatra. Given the popularity of pet birds across Southeast Asia, additional studies are urgently needed to determine the extent and magnitude of the threat posed by the pet trade.

19.
Proc Biol Sci ; 283(1840)2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27708152

RESUMO

An emerging hypothesis in fire ecology is that pyrodiversity increases species diversity. We test whether pyrodiversity-defined as the standard deviation of fire severity-increases avian biodiversity at two spatial scales, and whether and how this relationship may change in the decade following fire. We use a dynamic Bayesian community model applied to a multi-year dataset of bird surveys at 1106 points sampled across 97 fires in montane California. Our results provide strong support for a positive relationship between pyrodiversity and bird diversity. This relationship interacts with time since fire, with pyrodiversity having a greater effect on biodiversity at 10 years post-fire than at 1 year post-fire. Immediately after fires, patches of differing burn severities hold similar bird communities, but over the ensuing decade, bird assemblages within patches of contrasting severities differentiate. When evaluated at the scale of individual fires, fires with a greater heterogeneity of burn severities hold substantially more species. High spatial heterogeneity in severity, sometimes called 'mixed-severity fire', is a natural part of wildfire regimes in western North America, but may be jeopardized by climate change and a legacy of fire suppression. Forest management that encourages mixed-severity fire may be critical for sustaining biodiversity across fire-prone landscapes.


Assuntos
Biodiversidade , Aves/classificação , Incêndios , Florestas , Animais , Teorema de Bayes , California , Mudança Climática
20.
Proc Biol Sci ; 282(1799): 20141857, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25621330

RESUMO

Resurveys of historical collecting localities have revealed range shifts, primarily leading edge expansions, which have been attributed to global warming. However, there have been few spatially replicated community-scale resurveys testing whether species' responses are spatially consistent. Here we repeated early twentieth century surveys of small mammals along elevational gradients in northern, central and southern regions of montane California. Of the 34 species we analysed, 25 shifted their ranges upslope or downslope in at least one region. However, two-thirds of ranges in the three regions remained stable at one or both elevational limits and none of the 22 species found in all three regions shifted both their upper and lower limits in the same direction in all regions. When shifts occurred, high-elevation species typically contracted their lower limits upslope, whereas low-elevation species had heterogeneous responses. For high-elevation species, site-specific change in temperature better predicted the direction of shifts than change in precipitation, whereas the direction of shifts by low-elevation species was unpredictable by temperature or precipitation. While our results support previous findings of primarily upslope shifts in montane species, they also highlight the degree to which the responses of individual species vary across geographically replicated landscapes.


Assuntos
Mudança Climática , Mamíferos/fisiologia , Animais , Biodiversidade , California , Ecossistema , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA