Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 53, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031003

RESUMO

BACKGROUND: Small non-coding (s)RNAs are involved in the negative regulation of gene expression, playing critical roles in genome integrity, development and metabolic pathways. Targeting of RNAs by ribonucleoprotein complexes of sRNAs bound to Argonaute (AGO) proteins results in cleaved RNAs having precise and predictable 5` ends. While tools to study sliced bits of RNAs to confirm the efficiency of sRNA-mediated regulation are available, they are sub-optimal. In this study, we provide an improvised version of a tool with better efficiency to accurately validate sRNA targets. RESULTS: Here, we improvised the CleaveLand tool to identify additional micro (mi)RNA targets that belong to the same family and also other targets within a specified free energy cut-off. These additional targets were otherwise excluded during the default run. We employed these tools to understand the sRNA targeting efficiency in wild and cultivated rice, sequenced degradome from two rice lines, O. nivara and O. sativa indica Pusa Basmati-1 and analyzed variations in sRNA targeting. Our results indicate the existence of multiple miRNA-mediated targeting differences between domesticated and wild species. For example, Os5NG4 was targeted only in wild rice that might be responsible for the poor secondary wall formation when compared to cultivated rice. We also identified differential mRNA targets of secondary sRNAs that were generated after miRNA-mediated cleavage of primary targets. CONCLUSIONS: We identified many differentially targeted mRNAs between wild and domesticated rice lines. In addition to providing a step-wise guide to generate and analyze degradome datasets, we showed how domestication altered sRNA-mediated cascade silencing during the evolution of indica rice.


Assuntos
MicroRNAs , Oryza , Proteínas Argonautas/genética , Sequência de Bases , MicroRNAs/genética , Oryza/genética , Oryza/metabolismo , RNA Mensageiro
2.
Planta ; 256(1): 17, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35737180

RESUMO

MAIN CONCLUSION: In-depth comparative degradome analysis of two domesticated grape cultivars with diverse secondary metabolite accumulation reveals differential miRNA-mediated targeting. Small (s)RNAs such as micro(mi)RNAs and secondary small interfering (si) often work as negative switches of gene expression. In plants, it is well known that miRNAs target and cleave mRNAs that have high sequence complementarity. However, it is not known if there are variations in miRNA-mediated targeting between subspecies and cultivars that have been subjected to vast genetic modifications through breeding and other selections. Here, we have used PAREsnip2 tool for analysis of degradome datasets derived from two contrasting domesticated grape cultivars having varied fruit color, habit and leaf shape. We identified several interesting variations in sRNA targeting using degradome and 5'RACE analysis between two contrasting grape cultivars that was further correlated using RNA-seq analysis. Several of the differences we identified are associated with secondary metabolic pathways. We propose possible means by which sRNAs might contribute to diversity in secondary metabolites and other development pathways between two domesticated cultivars of grapes.


Assuntos
MicroRNAs , Vitis , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Melhoramento Vegetal , Interferência de RNA , RNA de Plantas/genética , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Vitis/genética , Vitis/metabolismo
3.
Nucleic Acids Res ; 48(6): 3103-3118, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32025695

RESUMO

Micro (mi)RNAs are 20-22nt long non-coding RNA molecules involved in post-transcriptional silencing of targets having high base-pair complementarity. Plant miRNAs are processed from long Pol II-transcripts with specific stem-loop structures by Dicer-like (DCL) 1 protein. Although there were reports indicating how a specific region is selected for miRNA biogenesis, molecular details were unclear. Here, we show that the presence of specific GC-rich sequence signature within miRNA/miRNA* region is required for the precise miRNA biogenesis. The involvement of GC-rich signatures in precise processing and abundance of miRNAs was confirmed through detailed molecular and functional analysis. Consistent with the presence of the miRNA-specific GC signature, target RNAs of miRNAs also possess conserved complementary sequence signatures in their miRNA binding motifs. The selection of these GC signatures was dependent on an RNA binding protein partner of DCL1 named HYL1. Finally, we demonstrate a direct application of this discovery for enhancing the abundance and efficiency of artificial miRNAs that are popular in plant functional genomic studies.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , MicroRNAs/biossíntese , Proteínas de Ligação a RNA/genética , Ribonuclease III/genética , Sequência Conservada/genética , Sequência Rica em GC/genética , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , RNA de Plantas/genética , Motivos de Ligação ao RNA/genética
4.
Plant Cell ; 30(11): 2649-2662, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30341147

RESUMO

Domestication of rice (Oryza sativa) included conversion of perennial wild species with few seeds to short plants that produced abundant seeds. Most domestication-associated changes were due to variations in transcription factors and other key proteins such as enzymes. Here, we show that multiple yield-related traits associated with indica rice domestication are linked to micro (mi) RNA-mediated regulation. Analysis of small (s) RNA data sets from cultivated indica rice lines, a few landraces, and two wild relatives of rice revealed the presence of abundant 22-nucleotide (nt) reads in wild relatives that mapped to miR397 precursors. miR397 was expressed at very high levels in wild relatives and at negligible levels in high-yielding cultivated lines. In its genera-specific form of 22-nt, miR397 targeted mRNAs encoding laccases that decayed and induced robust secondary cascade silencing in wild species that required RNA-dependent RNA polymerase 6. In wild species of rice, reduced expression of laccases resulted in low lignification. As expected, overexpression of miR397 induced de-domestication phenotypes. At least 26 uncharacterized QTLs previously implicated in rice yield overlapped with laccases and miR397 genes. These results suggest that miRNAs contribute to rice domestication-associated phenotypes.


Assuntos
Lacase/genética , MicroRNAs/genética , Oryza/enzimologia , Oryza/genética , Locos de Características Quantitativas/genética
5.
EMBO Rep ; 20(7): e47789, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31267708

RESUMO

Transfer RNA (tRNA)-derived small RNAs (tsRNAs) have recently emerged as important regulators of protein translation and shown to have diverse biological functions. However, the underlying cellular and molecular mechanisms of tsRNA function in the context of dynamic cell-state transitions remain unclear. Expression analysis of tsRNAs in distinct heterologous cell and tissue models of stem vs. differentiated states revealed a differentiation-dependent enrichment of 5'-tsRNAs. We report the identification of a set of 5'-tsRNAs that is upregulated in differentiating mouse embryonic stem cells (mESCs). Notably, interactome studies with differentially enriched 5'-tsRNAs revealed a switch in their association with "effector" RNPs and "target" mRNAs in different cell states. We demonstrate that specific 5'-tsRNAs can preferentially interact with the RNA-binding protein, Igf2bp1, in the RA-induced differentiated state. This association influences the transcript stability and thereby translation of the pluripotency-promoting factor, c-Myc, thus providing a mechanistic basis for how 5'-tsRNAs can modulate stem cell states in mESCs. Together our study highlights the role of 5'-tsRNAs in defining distinct cell states.


Assuntos
Diferenciação Celular , MicroRNAs/metabolismo , RNA de Transferência/metabolismo , Animais , Células Cultivadas , Células HCT116 , Humanos , Camundongos , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Estabilidade de RNA , RNA de Transferência/genética , Proteínas de Ligação a RNA/metabolismo
6.
J Exp Bot ; 70(18): 4775-4792, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31145783

RESUMO

MicroRNAs are a class of non-coding small RNAs involved in the negative regulation of gene expression, which play critical roles in developmental and metabolic pathways. Studies in several plants have identified a few microRNAs and other small RNAs that target regulators of the phenylpropanoid metabolic pathway called the MYB transcription factors. However, it is not well understood how sRNA-mediated regulation of MYBs influences the accumulation of specific secondary metabolites. Using sRNA sequencing, degradome analysis, mRNA sequencing, and proteomic analysis, we establish that grape lines with high anthocyanin content express two MYB-targeting microRNAs abundantly, resulting in the differential expression of specific MYB proteins. miR828 and miR858 target coding sequences of specific helix motifs in the mRNA sequences of MYB proteins. Targeting by miR828 caused MYB RNA decay and the production of a cascade of secondary siRNAs that depend on RNA-dependent RNA polymerase 6. MYB suppression and cascade silencing was more robust in grape lines with high anthocyanin content than in a flavonol-rich grape line. We establish that microRNA-mediated silencing targeted the repressor class of MYBs to promote anthocyanin biosynthesis in grape lines with high anthocyanins. We propose that this process regulates the expression of appropriate MYBs in grape lines to produce specific secondary metabolites.


Assuntos
Antocianinas/metabolismo , Flavonóis/metabolismo , MicroRNAs/genética , Proteínas de Plantas/genética , RNA de Plantas/genética , Fatores de Transcrição/genética , Vitis/genética , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Vitis/metabolismo
7.
J Vis Exp ; (161)2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-32716394

RESUMO

MicroRNAs (miRNAs) are a class of endogenously expressed non-coding, ~21 nt small RNAs involved in the regulation of gene expression in both plants and animals. Most miRNAs act as negative switches of gene expression targeting key genes. In plants, primary miRNAs (pri-miRNAs) transcripts are generated by RNA polymerase II, and they form varying lengths of stable stem-loop structures called pre-miRNAs. An endonuclease, Dicer-like1, processes the pre-miRNAs into miRNA-miRNA* duplexes. One of the strands from miRNA-miRNA* duplex is selected and loaded onto Argonaute 1 protein or its homologs to mediate the cleavage of target mRNAs. Although miRNAs are key signaling molecules, their detection is often carried out by less than optimal PCR-based methods instead of a sensitive northern blot analysis. We describe a simple, reliable, and extremely sensitive northern method that is ideal for the quantification of miRNA levels with very high sensitivity, literally from any plant tissue. Additionally, this method can be used to confirm the size, stability and the abundance of miRNAs and their precursors.


Assuntos
Northern Blotting/métodos , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Plantas/genética , Animais , Sequência de Bases , RNA Helicases DEAD-box , Expressão Gênica , RNA Mensageiro/genética , RNA de Plantas/genética , Ribonuclease III
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA