Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 300(9): 107645, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39127175

RESUMO

Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, persistently infects over 90% of the human adult population and is associated with several human cancers. To establish life-long infection, EBV tampers with the induction of type I interferon (IFN I)-dependent antiviral immunity in the host. How various EBV genes help orchestrate this crucial strategy is incompletely defined. Here, we reveal a mechanism by which the EBV nuclear antigen 3A (EBNA3A) may inhibit IFNß induction. Using proximity biotinylation we identify the histone acetyltransferase P300, a member of the IFNß transcriptional complex, as a binding partner of EBNA3A. We further show that EBNA3A also interacts with the activated IFN-inducing transcription factor interferon regulatory factor 3 that collaborates with P300 in the nucleus. Both events are mediated by the N-terminal domain of EBNA3A. We propose that EBNA3A limits the binding of interferon regulatory factor 3 to the IFNß promoter, thereby hampering downstream IFN I signaling. Collectively, our findings suggest a new mechanism of immune evasion by EBV, affected by its latency gene EBNA3A.


Assuntos
Proteína p300 Associada a E1A , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Fator Regulador 3 de Interferon , Interferon beta , Humanos , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Interferon beta/metabolismo , Interferon beta/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/genética , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/genética , Células HEK293 , Regiões Promotoras Genéticas , Regulação da Expressão Gênica , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/genética , Ligação Proteica , Transdução de Sinais , Núcleo Celular/metabolismo
2.
J Am Chem Soc ; 146(39): 26957-26964, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39288007

RESUMO

Upon infection of host cells, Legionella pneumophila releases a multitude of effector enzymes into the cell's cytoplasm that hijack a plethora of cellular activities, including the host ubiquitination pathways. Effectors belonging to the SidE-family are involved in noncanonical serine phosphoribosyl ubiquitination of host substrate proteins contributing to the formation of a Legionella-containing vacuole that is crucial in the onset of Legionnaires' disease. This dynamic process is reversed by effectors called Dups that hydrolyze the phosphodiester in the phosphoribosyl ubiquitinated protein. We installed reactive warheads on chemically prepared ribosylated ubiquitin to generate a set of probes targeting these Legionella enzymes. In vitro tests on recombinant DupA revealed that a vinyl sulfonate warhead was most efficient in covalent complex formation. Mutagenesis and X-ray crystallography approaches were used to identify the site of covalent cross-linking to be an allosteric cysteine residue. The subsequent application of this probe highlights the potential to selectively enrich the Dup enzymes from Legionella-infected cell lysates.


Assuntos
Legionella pneumophila , Legionella pneumophila/enzimologia , Modelos Moleculares , Cristalografia por Raios X , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Sondas Moleculares/química , Ubiquitina/metabolismo , Ubiquitina/química
3.
Glycobiology ; 33(9): 732-744, 2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37498177

RESUMO

Glycans play a pivotal role in biology. However, because of the low-affinity of glycan-protein interactions, many interaction pairs remain unknown. Two important glycoproteins involved in B-cell biology are the B-cell receptor and its secreted counterpart, antibodies. It has been indicated that glycans expressed by these B-cell-specific molecules can modulate immune activation via glycan-binding proteins. In several autoimmune diseases, an increased prevalence of variable domain glycosylation of IgG autoantibodies has been observed. Especially, the hallmarking autoantibodies in rheumatoid arthritis, anti-citrullinated protein antibodies, carry a substantial amount of variable domain glycans. The variable domain glycans expressed by these autoantibodies are N-linked, complex-type, and α2-6 sialylated, and B-cell receptors carrying variable domain glycans have been hypothesized to promote selection of autoreactive B cells via interactions with glycan-binding proteins. Here, we use the anti-citrullinated protein antibody response as a prototype to study potential in solution and in situ B-cell receptor-variable domain glycan interactors. We employed SiaDAz, a UV-activatable sialic acid analog carrying a diazirine moiety that can form covalent bonds with proximal glycan-binding proteins. We show, using oligosaccharide engineering, that SiaDAz can be readily incorporated into variable domain glycans of both antibodies and B-cell receptors. Our data show that antibody variable domain glycans are able to interact with inhibitory receptor, CD22. Interestingly, although we did not detect this interaction on the cell surface, we captured CD79 ß glycan-B-cell receptor interactions. These results show the utility of combining photoaffinity labeling and oligosaccharide engineering for identifying antibody and B-cell receptor interactions and indicate that variable domain glycans appear not to be lectin cis ligands in our tested conditions.


Assuntos
Linfócitos B , Receptores de Antígenos de Linfócitos B , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Autoanticorpos , Polissacarídeos/química , Oligossacarídeos/metabolismo
4.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065225

RESUMO

Developments in mass spectrometry (MS)-based analyses of glycoproteins have been important to study changes in glycosylation related to disease. Recently, the characteristic pattern of oxonium ions in glycopeptide fragmentation spectra had been used to assign different sets of glycopeptides. In particular, this was helpful to discriminate between O-GalNAc and O-GlcNAc. Here, we thought to investigate how such information can be used to examine quantitative proteomics data. For this purpose, we used tandem mass tag (TMT)-labeled samples from total cell lysates and secreted proteins from three different colorectal cancer cell lines. Following automated glycopeptide assignment (Byonic) and evaluation of the presence and relative intensity of oxonium ions, we observed that, in particular, the ratio of the ions at m/z 144.066 and 138.055, respectively, could be used to discriminate between O-GlcNAcylated and O-GalNAcylated peptides, with concomitant relative quantification between the different cell lines. Among the O-GalNAcylated proteins, we also observed anterior gradient protein 2 (AGR2), a protein which glycosylation site and status was hitherto not well documented. Using a combination of multiple fragmentation methods, we then not only assigned the site of modification, but also showed different glycosylation between intracellular (ER-resident) and secreted AGR2. Overall, our study shows the potential of broad application of the use of the relative intensities of oxonium ions for the confident assignment of glycopeptides, even in complex proteomics datasets.


Assuntos
Íons/metabolismo , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo , Oniocompostos/metabolismo , Linhagem Celular Tumoral , Glicopeptídeos/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Células HCT116 , Células HT29 , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
5.
Int J Mol Sci ; 21(15)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752259

RESUMO

Colorectal cancer (CRC) is the second-leading cause of cancer death worldwide due in part to a high proportion of patients diagnosed at advanced stages of the disease. For this reason, many efforts have been made towards new approaches for early detection and prognosis. Cancer-associated aberrant glycosylation, especially the Tn and STn antigens, can be detected using the macrophage galactose-type C-type lectin (MGL/CLEC10A/CD301), which has been shown to be a promising tool for CRC prognosis. We had recently identified the major MGL-binding glycoproteins in two high-MGL-binding CRC cells lines, HCT116 and HT29. However, we failed to detect the presence of O-linked Tn and STn glycans on most CRC glycoproteins recognized by MGL. We therefore investigated here the impact of N-linked and O-linked glycans carried by these proteins for the binding to MGL. In addition, we performed quantitative proteomics to study the major differences in proteins involved in glycosylation in these cells. Our results showed that N-glycans have a significant, previously underestimated, importance in MGL binding to CRC cell lines. Finally, we highlighted both common and cell-specific processes associated with a high-MGL-binding phenotype, such as differential levels of enzymes involved in protein glycosylation, and a transcriptional factor (CDX-2) involved in their regulation.


Assuntos
Neoplasias Colorretais/metabolismo , Glicoproteínas/metabolismo , Lectinas Tipo C/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Western Blotting , Fator de Transcrição CDX2/metabolismo , Cromatografia Líquida de Alta Pressão , Neoplasias Colorretais/patologia , Glicosilação , Células HCT116 , Células HT29 , Humanos , Polissacarídeos/metabolismo , Ligação Proteica , Espectrometria de Massas em Tandem
6.
Invest Ophthalmol Vis Sci ; 65(8): 37, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39042403

RESUMO

Purpose: Cell lines are being used in preclinical uveal melanoma (UM) research. Because not all cell lines harbor typical GNAQ or GNA11 hotspot mutations, we aimed at better classifying them and determining whether we could find genetic causes to explain the protein and mRNA expression profiles of the cell lines. Methods: We studied protein and mRNA expression of 14 UM cell lines and determined the presence of single nucleotide variants and small insertions and deletions with next-generation sequencing and copy number alterations with a single nucleotide polymorphism array. The lists of differentially expressed proteins and genes were merged, and shared lists were created, keeping only terms with concordant mRNA and protein expression. Enrichment analyses were performed on the shared lists. Results: Cell lines Mel285 and Mel290 are separate from GNA-mutated cell lines and show downregulation of melanosome-related markers. Both lack typical UM mutations but each harbors four putatively deleterious variants in CTNNB1, PPP1R10, LIMCH1, and APC in Mel285 and ARID1A, PPP1R10, SPG11, and RNF43 in Mel290. The upregulated terms in Mel285 and Mel290 did not point to a convincing alternative origin. Mel285 shows loss of chromosomes 1p, 3p, partial 3q, 6, and partial 8p, whereas Mel290 shows loss of 1p and 6. Expression in the other 12 cell lines was related to BAP1 expression. Conclusions: Although Mel285 and Mel290 have copy number alterations that fit UM, multi-omics analyses show that they belong to a separate group compared to the other analyzed UM cell lines. Therefore, they may not be representative models to test potential therapeutic targets for UM.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Subunidades alfa de Proteínas de Ligação ao GTP , Regulação Neoplásica da Expressão Gênica , Melanoma , Mutação , RNA Mensageiro , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Neoplasias Uveais , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Humanos , Ubiquitina Tiolesterase/genética , RNA Mensageiro/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Proteínas Supressoras de Tumor/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Polimorfismo de Nucleotídeo Único , Análise Mutacional de DNA
7.
J Med Chem ; 67(10): 7935-7953, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38713163

RESUMO

The integration of diverse chemical tools like small-molecule inhibitors, activity-based probes (ABPs), and proteolysis targeting chimeras (PROTACs) advances clinical drug discovery and facilitates the exploration of various biological facets of targeted proteins. Here, we report the development of such a chemical toolbox for the human Parkinson disease protein 7 (PARK7/DJ-1) implicated in Parkinson's disease and cancers. By combining structure-guided design, miniaturized library synthesis, and high-throughput screening, we identified two potent compounds, JYQ-164 and JYQ-173, inhibiting PARK7 in vitro and in cells by covalently and selectively targeting its critical residue, Cys106. Leveraging JYQ-173, we further developed a cell-permeable Bodipy probe, JYQ-196, for covalent labeling of PARK7 in living cells and a first-in-class PARK7 degrader JYQ-194 that selectively induces its proteasomal degradation in human cells. Our study provides a valuable toolbox to enhance the understanding of PARK7 biology in cellular contexts and opens new opportunities for therapeutic interventions.


Assuntos
Proteína Desglicase DJ-1 , Proteólise , Compostos de Boro/farmacologia , Compostos de Boro/química , Compostos de Boro/síntese química , Proteína Desglicase DJ-1/metabolismo , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Relação Estrutura-Atividade
8.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39115541

RESUMO

Dendritic cell (DC) activation and function are underpinned by profound changes in cellular metabolism. Several studies indicate that the ability of DCs to promote tolerance is dependent on catabolic metabolism. Yet the contribution of AMP-activated kinase (AMPK), a central energy sensor promoting catabolism, to DC tolerogenicity remains unknown. Here, we show that AMPK activation renders human monocyte-derived DCs tolerogenic as evidenced by an enhanced ability to drive differentiation of regulatory T cells, a process dependent on increased RALDH activity. This is accompanied by several metabolic changes, including increased breakdown of glycerophospholipids, enhanced mitochondrial fission-dependent fatty acid oxidation, and upregulated glucose catabolism. This metabolic rewiring is functionally important as we found interference with these metabolic processes to reduce to various degrees AMPK-induced RALDH activity as well as the tolerogenic capacity of moDCs. Altogether, our findings reveal a key role for AMPK signaling in shaping DC tolerogenicity and suggest AMPK as a target to direct DC-driven tolerogenic responses in therapeutic settings.


Assuntos
Proteínas Quinases Ativadas por AMP , Diferenciação Celular , Células Dendríticas , Glucose , Tolerância Imunológica , Metabolismo dos Lipídeos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Glucose/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Ativação Enzimática , Transdução de Sinais , Células Cultivadas
9.
Nat Commun ; 14(1): 4027, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419978

RESUMO

IgG3 is unique among the IgG subclasses due to its extended hinge, allotypic diversity and enhanced effector functions, including highly efficient pathogen neutralisation and complement activation. It is also underrepresented as an immunotherapeutic candidate, partly due to a lack of structural information. Here, we use cryoEM to solve structures of antigen-bound IgG3 alone and in complex with complement components. These structures reveal a propensity for IgG3-Fab clustering, which is possible due to the IgG3-specific flexible upper hinge region and may maximise pathogen neutralisation by forming high-density antibody arrays. IgG3 forms elevated hexameric Fc platforms that extend above the protein corona to maximise binding to receptors and the complement C1 complex, which here adopts a unique protease conformation that may precede C1 activation. Mass spectrometry reveals that C1 deposits C4b directly onto specific IgG3 residues proximal to the Fab domains. Structural analysis shows this to be caused by the height of the C1-IgG3 complex. Together, these data provide structural insights into the role of the unique IgG3 extended hinge, which will aid the development and design of upcoming immunotherapeutics based on IgG3.


Assuntos
Proteínas do Sistema Complemento , Imunoglobulina G , Ativação do Complemento , Antígenos , Complemento C1q/metabolismo
10.
ACS Chem Biol ; 18(9): 2003-2013, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37642399

RESUMO

Ubiquitin thioesterase OTUB2, a cysteine protease from the ovarian tumor (OTU) deubiquitinase superfamily, is often overexpressed during tumor progression and metastasis. Development of OTUB2 inhibitors is therefore believed to be therapeutically important, yet potent and selective small-molecule inhibitors targeting OTUB2 are scarce. Here, we describe the development of an improved OTUB2 inhibitor, LN5P45, comprising a chloroacethydrazide moiety that covalently reacts to the active-site cysteine residue. LN5P45 shows outstanding target engagement and proteome-wide selectivity in living cells. Importantly, LN5P45 as well as other OTUB2 inhibitors strongly induce monoubiquitination of OTUB2 on lysine 31. We present a route to future OTUB2-related therapeutics and have shown that the OTUB2 inhibitor developed in this study can help to uncover new aspects of the related biology and open new questions regarding the understanding of OTUB2 regulation at the post-translational modification level.


Assuntos
Cisteína Proteases , Processamento de Proteína Pós-Traducional , Ubiquitinação , Ubiquitina , Cisteína
11.
Clin Cancer Res ; 29(20): 4278-4288, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37540567

RESUMO

PURPOSE: The availability of (neo)antigens and the infiltration of tumors by (neo)antigen-specific T cells are crucial factors in cancer immunotherapy. In this study, we aimed to investigate the targetability of (neo)antigens in advanced progessive melanoma and explore the potential for continued T-cell-based immunotherapy. EXPERIMENTAL DESIGN: We examined a cohort of eight patients with melanoma who had sequential metastases resected at early and later time points. Antigen-presenting capacity was assessed using IHC and flow cytometry. T-cell infiltration was quantified through multiplex immunofluorescence. Whole-exome and RNA sequencing were conducted to identify neoantigens and assess the expression of neoantigens and tumor-associated antigens. Mass spectrometry was used to evaluate antigen presentation. Tumor recognition by autologous T cells was assessed by coculture assays with cell lines derived from the metastatic lesions. RESULTS: We observed similar T-cell infiltration in paired early and later metastatic (LM) lesions. Although elements of the antigen-presenting machinery were affected in some LM lesions, both the early and later metastasis-derived cell lines were recognized by autologous T cells. At the genomic level, the (neo)antigen landscape was dynamic, but the (neo)antigen load was stable between paired lesions. CONCLUSIONS: Our findings indicate that subsequently isolated tumors from patients with late-stage melanoma retain sufficient antigen-presenting capacity, T-cell infiltration, and a stable (neo)antigen load, allowing recognition of tumor cells by T cells. This indicates a continuous availability of T-cell targets in metastases occurring at different time points and supports further exploration of (neo)antigen-specific T-cell-based therapeutic approaches for advanced melanoma.

12.
Front Med (Lausanne) ; 9: 997305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237552

RESUMO

Mass spectrometry (MS)-based proteomics profiling has undoubtedly increased the knowledge about cellular processes and functions. However, its applicability for paucicellular sample analyses is currently limited. Although new approaches have been developed for single-cell studies, most of them have not (yet) been standardized and/or require highly specific (often home-built) devices, thereby limiting their broad implementation, particularly in non-specialized settings. To select an optimal MS-oriented proteomics approach applicable in translational research and clinical settings, we assessed 10 different sample preparation procedures in paucicellular samples of closely-related cell types. Particularly, five cell lysis protocols using different chemistries and mechanical forces were combined with two sample clean-up techniques (C18 filter- and SP3-based), followed by tandem mass tag (TMT)-based protein quantification. The evaluation was structured in three phases: first, cell lines from hematopoietic (THP-1) and non-hematopoietic (HT-29) origins were used to test the approaches showing the combination of a urea-based lysis buffer with the SP3 bead-based clean-up system as the best performer. Parameters such as reproducibility, accessibility, spatial distribution, ease of use, processing time and cost were considered. In the second phase, the performance of the method was tested on maturation-related cell populations: three different monocyte subsets from peripheral blood and, for the first time, macrophages/microglia (MAC) from glioblastoma samples, together with T cells from both tissues. The analysis of 50,000 cells down to only 2,500 cells revealed different protein expression profiles associated with the distinct cell populations. Accordingly, a closer relationship was observed between non-classical monocytes and MAC, with the latter showing the co-expression of M1 and M2 macrophage markers, although pro-tumoral and anti-inflammatory proteins were more represented. In the third phase, the results were validated by high-end spectral flow cytometry on paired monocyte/MAC samples to further determine the sensitivity of the MS approach selected. Finally, the feasibility of the method was proven in 194 additional samples corresponding to 38 different cell types, including cells from different tissue origins, cellular lineages, maturation stages and stimuli. In summary, we selected a reproducible, easy-to-implement sample preparation method for MS-based proteomic characterization of paucicellular samples, also applicable in the setting of functionally closely-related cell populations.

13.
MAbs ; 13(1): 1982847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34674601

RESUMO

The crystallizable fragment (Fc) of immunoglobulin G (IgG) activates key immunological responses by interacting with Fc gamma receptors (FcÉ£R). FcÉ£RIIIb contributes to neutrophil activation and is involved in antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). These processes present important mechanisms-of-actions of therapeutic antibodies. The very low affinity of IgG toward FcÉ£RIIIb (KD ~ 10 µM) is a technical challenge for interaction studies. Additionally, the interaction is strongly dependent on IgG glycosylation, a major contributor to proteoform heterogeneity. We developed an affinity chromatography-mass spectrometry (AC-MS) assay for analyzing IgG-FcÉ£RIIIb interactions in a proteoform-resolved manner. This proved to be well suited to study low-affinity interactions. The applicability and selectivity of the method were demonstrated on a panel of nine different IgG monoclonal antibodies (mAbs), including no-affinity, low-affinity and high-affinity Fc-engineered or glycoengineered mAbs. Thereby, we could reproduce reported affinity rankings of different IgG glycosylation features and IgG subclasses. Additional post-translational modifications (IgG1 Met252 oxidation, IgG3 hinge-region O-glycosylation) showed no effect on FcÉ£RIIIb binding. Interestingly, we observed indications of an effect of the variable domain sequence on the Fc-binding that deserves further attention. Our new AC-MS method is a powerful tool for expanding knowledge on structure-function relationships of the IgG-FcÉ£RIIIb interaction. Hence, this assay may substantially improve the efficiency of assessing critical quality attributes of therapeutic mAbs with respect to an important aspect of neutrophil activation.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Receptores de IgG , Afinidade de Anticorpos , Cromatografia de Afinidade , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Espectrometria de Massas , Receptores Fc/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA