Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Clin Chem ; 63(2): 503-512, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27974384

RESUMO

BACKGROUND: Despite advances in next generation DNA sequencing (NGS), NGS-based single gene tests for diagnostic purposes require improvements in terms of completeness, quality, speed, and cost. Single-molecule molecular inversion probes (smMIPs) are a technology with unrealized potential in the area of clinical genetic testing. In this proof-of-concept study, we selected 2 frequently requested gene tests, those for the breast cancer genes BRCA1 and BRCA2, and developed an automated work flow based on smMIPs. METHODS: The BRCA1 and BRCA2 smMIPs were validated using 166 human genomic DNA samples with known variant status. A generic automated work flow was built to perform smMIP-based enrichment and sequencing for BRCA1, BRCA2, and the checkpoint kinase 2 (CHEK2) c.1100del variant. RESULTS: Pathogenic and benign variants were analyzed in a subset of 152 previously BRCA-genotyped samples, yielding an analytical sensitivity and specificity of 100%. Following automation, blind analysis of 65 in-house samples and 267 Norwegian samples correctly identified all true-positive variants (>3000), with no false positives. Consequent to process optimization, turnaround times were reduced by 60% to currently 10-15 days. Copy number variants were detected with an analytical sensitivity of 100% and an analytical specificity of 88%. CONCLUSIONS: smMIP-based genetic testing enables automated and reliable analysis of the coding sequences of BRCA1 and BRCA2. The use of single-molecule tags, double-tiled targeted enrichment, and capturing and sequencing in duplo, in combination with automated library preparation and data analysis, results in a robust process and reduces routine turnaround times. Furthermore, smMIP-based copy number variation analysis could make independent copy number variation tools like multiplex ligation-dependent probes amplification dispensable.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Variações do Número de Cópias de DNA/genética , Sondas de DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
2.
Prenat Diagn ; 36(3): 216-23, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26774010

RESUMO

OBJECTIVE: To validate Illumina's two-channel NextSeq 500 sequencing system for noninvasive prenatal testing (NIPT) of fetal whole chromosome and partial aberrations. METHODS: A total of 162 plasma samples, previously sequenced for NIPT on a SOLiD 5500xl platform, were sequenced on the NextSeq 500 using 75-bp single-end sequencing, followed by analysis using the WISECONDOR algorithm. RESULTS: For whole chromosome aneuploidy detection, all samples were classified correctly (in total 3× T13, 3× T18, 8× T21 and 145× euploid). Three partial aberrations (36-Mb terminal loss of 5p, 14-Mb gain on 18p and 33-Mb terminal loss of 13q) were also correctly identified. Fetal fractions in 34 male samples sequenced on both the SOLiD 5500xl and NextSeq 500 platform showed no significant difference. To test robustness, two sample sets, containing both euploid and aneuploid samples, were sequenced on different NextSeq 500 machines, revealing identical results. With unchanged laboratory flow, the NIPT turnaround time could be reduced from 15-16 calendar days to 7-8 calendar days, after switching from the SOLiD 5500xl to the NextSeq 500 platform. CONCLUSIONS: The NextSeq 500 platform can be used for NIPT to detect both whole and partial chromosome aberrations. It has fast turnaround times and is suitable for mid-sized laboratories.


Assuntos
Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Diagnóstico Pré-Natal/métodos , Líquido Amniótico/química , Líquido Amniótico/metabolismo , Vilosidades Coriônicas/química , Vilosidades Coriônicas/metabolismo , DNA/análise , DNA/sangue , Feminino , Feto/metabolismo , Humanos , Masculino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA