Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(1)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36649220

RESUMO

Invasive fungal infections are a leading global cause of human mortality. Only three major classes of antifungal drugs are widely used, and resistance to all three classes can arise rapidly. The most widely prescribed antifungal drug, fluconazole, disseminates rapidly and reaches a wide range of concentrations throughout the body. The impact of drug concentration on the spectrum and effect of mutations acquired during adaptation is not known for any fungal pathogen, and how the specific level of a given stress influences the distribution of beneficial mutations has been poorly explored in general. We evolved 144 lineages from three genetically distinct clinical isolates of Candida albicans to four concentrations of fluconazole (0, 1, 8, and 64 µg/ml) and performed comprehensive phenotypic and genomic comparisons of ancestral and evolved populations. Adaptation to different fluconazole concentrations resulted in distinct adaptive trajectories. In general, lineages evolved to drug concentrations close to their MIC50 (the level of drug that reduces growth by 50% in the ancestor) tended to rapidly evolve an increased MIC50 and acquired distinct segmental aneuploidies and copy number variations. By contrast, lineages evolved to drug concentrations above their ancestral MIC50 tended to acquire a different suite of mutational changes and increased in drug tolerance (the ability of a subpopulation of cells to grow slowly above their MIC50). This is the first evidence that different concentrations of drug can select for different genotypic and phenotypic outcomes in vitro and may explain observed in vivo drug response variation.


Assuntos
Antifúngicos , Candida albicans , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Candida albicans/genética , Variações do Número de Cópias de DNA , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana , Mutação
2.
Biotechnol Bioeng ; 121(9): 2952-2973, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38853778

RESUMO

The fifth modeling workshop (5MW) was held in June 2023 at Favrholm, Denmark and sponsored by Recovery of Biological Products Conference Series. The goal of the workshop was to assemble modeling practitioners to review and discuss the current state, progress since the last fourth mini modeling workshop (4MMW), gaps and opportunities for development, deployment and maintenance of models in bioprocess applications. Areas of focus were four categories: biophysics and molecular modeling, mechanistic modeling, computational fluid dynamics (CFD) and plant modeling. Highlights of the workshop included significant advancements in biophysical/molecular modeling to novel protein constructs, mechanistic models for filtration and initial forays into modeling of multiphase systems using CFD for a bioreactor and mapped strategically to cell line selection/facility fit. A significant impediment to more fully quantitative and calibrated models for biophysics is the lack of large, anonymized datasets. A potential solution would be the use of specific descriptors in a database that would allow for detailed analyzes without sharing proprietary information. Another gap identified was the lack of a consistent framework for use of models that are included or support a regulatory filing beyond the high-level guidance in ICH Q8-Q11. One perspective is that modeling can be viewed as a component or precursor of machine learning (ML) and artificial intelligence (AI). Another outcome was alignment on a key definition for "mechanistic modeling." Feedback from participants was that there was progression in all of the fields of modeling within scope of the conference. Some areas (e.g., biophysics and molecular modeling) have opportunities for significant research investment to realize full impact. However, the need for ongoing research and development for all model types does not preclude the application to support process development, manufacturing and use in regulatory filings. Analogous to ML and AI, given the current state of the four modeling types, a prospective investment in educating inter-disciplinary subject matter experts (e.g., data science, chromatography) is essential to advancing the modeling community.


Assuntos
Simulação por Computador , Modelos Biológicos , Indústria Farmacêutica
3.
PLoS Genet ; 15(1): e1007901, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615616

RESUMO

Morphogenetic transitions are prevalent in the fungal kingdom. For a leading human fungal pathogen, Candida albicans, the capacity to transition between yeast and filaments is key for virulence. For the model yeast Saccharomyces cerevisiae, filamentation enables nutrient acquisition. A recent functional genomic screen in S. cerevisiae identified Mfg1 as a regulator of morphogenesis that acts in complex with Flo8 and Mss11 to mediate transcriptional responses crucial for filamentation. In C. albicans, Mfg1 also interacts physically with Flo8 and Mss11 and is critical for filamentation in response to diverse cues, but the mechanisms through which it regulates morphogenesis remained elusive. Here, we explored the consequences of perturbation of Mfg1, Flo8, and Mss11 on C. albicans morphogenesis, and identified functional divergence of complex members. We observed that C. albicans Mss11 was dispensable for filamentation, and that overexpression of FLO8 caused constitutive filamentation even in the absence of Mfg1. Harnessing transcriptional profiling and chromatin immunoprecipitation coupled to microarray analysis, we identified divergence between transcriptional targets of Flo8 and Mfg1 in C. albicans. We also established that Flo8 and Mfg1 cooperatively bind to promoters of key regulators of filamentation, including TEC1, for which overexpression was sufficient to restore filamentation in the absence of Flo8 or Mfg1. To further explore the circuitry through which Mfg1 regulates morphogenesis, we employed a novel strategy to select for mutations that restore filamentation in the absence of Mfg1. Whole genome sequencing of filamentation-competent mutants revealed chromosome 6 amplification as a conserved adaptive mechanism. A key determinant of the chromosome 6 amplification is FLO8, as deletion of one allele blocked morphogenesis, and chromosome 6 was not amplified in evolved lineages for which FLO8 was re-located to a different chromosome. Thus, this work highlights rewiring of key morphogenetic regulators over evolutionary time and aneuploidy as an adaptive mechanism driving fungal morphogenesis.


Assuntos
Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Candida albicans/patogenicidade , Fungos/genética , Fungos/patogenicidade , Regulação Fúngica da Expressão Gênica , Humanos , Hifas/genética , Hifas/patogenicidade , Morfogênese/genética , Complexos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
4.
PLoS Genet ; 14(4): e1007319, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29702647

RESUMO

Invasive fungal infections caused by the pathogen Candida albicans have transitioned from a rare curiosity to a major cause of human mortality. This is in part due to the emergence of resistance to the limited number of antifungals available to treat fungal infections. Azoles function by targeting the biosynthesis of ergosterol, a key component of the fungal cell membrane. Loss-of-function mutations in the ergosterol biosynthetic gene ERG3 mitigate azole toxicity and enable resistance that depends upon fungal stress responses. Here, we performed a genome-wide synthetic genetic array screen in Saccharomyces cerevisiae to map ERG3 genetic interactors and uncover novel circuitry important for azole resistance. We identified nine genes that enabled erg3-mediated azole resistance in the model yeast and found that only two of these genes had a conserved impact on resistance in C. albicans. Further, we screened a C. albicans homozygous deletion mutant library and identified 13 genes for which deletion enhances azole susceptibility. Two of the genes, RGD1 and PEP8, were also important for azole resistance acquired by diverse mechanisms. We discovered that loss of function of retrograde transport protein Pep8 overwhelms the functional capacity of the stress response regulator calcineurin, thereby abrogating azole resistance. To identify the mechanism through which the GTPase activator protein Rgd1 enables azole resistance, we selected for mutations that restore resistance in strains lacking Rgd1. Whole genome sequencing uncovered parallel adaptive mechanisms involving amplification of both chromosome 7 and a large segment of chromosome 3. Overexpression of a transporter gene on the right portion of chromosome 3, NPR2, was sufficient to enable azole resistance in the absence of Rgd1. Thus, we establish a novel mechanism of adaptation to drug-induced stress, define genetic circuitry underpinning azole resistance, and illustrate divergence in resistance circuitry over evolutionary time.


Assuntos
Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Antifúngicos/farmacologia , Candida albicans/genética , Candida albicans/fisiologia , Farmacorresistência Fúngica/genética , Proteínas Ativadoras de GTPase/genética , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Mutação , Micoses/microbiologia , Oxirredutases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Sequenciamento Completo do Genoma/métodos
5.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808213

RESUMO

BACKGROUND: Cyclocreatine phosphate (CCrP) is a potent bioenergetic cardioprotective compound known to preserve high levels of cellular adenosine triphosphate during ischemia. Using the standard Isoproterenol (ISO) rat model of heart failure (HF), we recently demonstrated that the administration of CCrP prevented the development of HF by markedly reducing cardiac remodeling (fibrosis and collagen deposition) and maintaining normal ejection fraction and heart weight, as well as physical activity. The novel inflammatory mediator, Nourin is a 3-KDa formyl peptide rapidly released by ischemic myocardium and is associated with post-ischemic cardiac inflammation. We reported that the Nourin-associated miR-137 (marker of cell damage) and miR-106b-5p (marker of inflammation) are significantly upregulated in unstable angina patients and patients with acute myocardial infarction, but not in healthy subjects. OBJECTIVES: To test the hypothesis that Nourin-associated miR-137 and miR-106b-5p are upregulated in ISO-induced "HF rats" and that the administration of CCrP prevents myocardial injury (MI) and reduces Nourin gene expression in "non-HF rats". METHODS: 25 male Wistar rats (180-220 g) were used: ISO/saline (n = 6), ISO/CCrP (0.8 g/kg/day) (n = 5), control/saline (n = 5), and control/CCrP (0.8 g/kg/day) (n = 4). In a limited study, CCrP at a lower dose of 0.4 g/kg/day (n = 3) and a higher dose of 1.2 g/kg/day (n = 2) were also tested. The Rats were injected SC with ISO for two consecutive days at doses of 85 and 170 mg/kg/day, respectively, then allowed to survive for an additional two weeks. CCrP and saline were injected IP (1 mL) 24 h and 1 h before first ISO administration, then daily for two weeks. Serum CK-MB (U/L) was measured 24 h after the second ISO injection to confirm myocardial injury. After 14 days, gene expression levels of miR-137 and miR-106b-5p were measured in serum samples using quantitative real-time PCR (qPCR). RESULTS: While high levels of CK-MB were detected after 24 h in the ISO/saline rats indicative of MI, the ISO/CCrP rats showed normal CK-MB levels, supporting prevention of MI by CCrP. After 14 days, gene expression profiles showed significant upregulation of miR-137 and miR-106b-5p by 8.6-fold and 8.7-fold increase, respectively, in the ISO/saline rats, "HF rats," compared to the control/saline group. On the contrary, CCrP treatment at 0.8 g/kg/day markedly reduced gene expression of miR-137 by 75% and of miR-106b-5p by 44% in the ISO/CCrP rats, "non-HF rats," compared to the ISO/Saline rats, "HF rats." Additionally, healthy rats treated with CCrP for 14 days showed no toxicity in heart, liver, and renal function. CONCLUSIONS: Results suggest a role of Nourin-associated miR-137 and miR-106b-5p in the pathogenesis of HF and that CCrP treatment prevented ischemic injury in "non-HF rats" and significantly reduced Nourin gene expression levels in a dose-response manner. The Nourin gene-based mRNAs may, therefore, potentially be used as monitoring markers of drug therapy response in HF, and CCrP-as a novel preventive therapy of HF due to ischemia.


Assuntos
Imidazolidinas/farmacologia , MicroRNAs/genética , Fosfocreatina/análogos & derivados , Angina Instável/genética , Animais , Biomarcadores Farmacológicos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Humanos , Imidazolidinas/metabolismo , Isoproterenol/uso terapêutico , Masculino , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fosfocreatina/genética , Fosfocreatina/metabolismo , Fosfocreatina/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
6.
Biotechnol Bioeng ; 117(12): 3986-4000, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32725887

RESUMO

The Third Modeling Workshop focusing on bioprocess modeling was held in Kenilworth, NJ in May 2019. A summary of these Workshop proceedings is captured in this manuscript. Modeling is an active area of research within the biotechnology community, and there is a critical need to assess the current state and opportunities for continued investment to realize the full potential of models, including resource and time savings. Beyond individual presentations and topics of novel interest, a substantial portion of the Workshop was devoted toward group discussions of current states and future directions in modeling fields. All scales of modeling, from biophysical models at the molecular level and up through large scale facility and plant modeling, were considered in these discussions and are summarized in the manuscript. Model life cycle management from model development to implementation and sustainment are also considered for different stages of clinical development and commercial production. The manuscript provides a comprehensive overview of bioprocess modeling while suggesting an ideal future state with standardized approaches aligned across the industry.


Assuntos
Biotecnologia , Simulação por Computador , Modelos Teóricos
7.
Antonie Van Leeuwenhoek ; 111(11): 2095-2105, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29785674

RESUMO

Gemmata obscuriglobus is a Gram-negative bacterium with several intriguing biological features. Here, we present a complete, de novo whole genome assembly for G. obscuriglobus which consists of a single, circular 9 Mb chromosome, with no plasmids detected. The genome was annotated using the NCBI Prokaryotic Genome Annotation pipeline to generate common gene annotations. Analysis of the rRNA genes revealed three interesting features for a bacterium. First, linked G. obscuriglobus rrn operons have a unique gene order, 23S-5S-16S, compared to typical prokaryotic rrn operons (16S-23S-5S). Second, G. obscuriglobus rrn operons can either be linked or unlinked (a 16S gene is in a separate genomic location from a 23S and 5S gene pair). Third, all of the 23S genes (5 in total) have unique polymorphisms. Genome analysis of a different Gemmata species (SH-PL17), revealed a similar 23S-5S-16S gene order in all of its linked rrn operons and the presence of an unlinked operon. Together, our findings show that unique and rare features in Gemmata rrn operons among prokaryotes provide a means to better define the evolutionary relatedness of Gemmata species and the divergence time for different Gemmata species. Additionally, these rrn operon differences provide important insights into the rrn operon architecture of common ancestors of the planctomycetes.


Assuntos
Genoma Bacteriano/genética , Óperon/genética , Planctomycetales/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Óperon de RNAr/genética
8.
FEMS Yeast Res ; 17(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27993914

RESUMO

The eukaryotic cell cycle is robustly designed, with interacting molecules organized within a definite topology that ensures temporal precision of its phase transitions. Its underlying dynamics are regulated by molecular switches, for which remarkable insights have been provided by genetic and molecular biology efforts. In a number of cases, this information has been made predictive, through computational models. These models have allowed for the identification of novel molecular mechanisms, later validated experimentally. Logical modeling represents one of the youngest approaches to address cell cycle regulation. We summarize the advances that this type of modeling has achieved to reproduce and predict cell cycle dynamics. Furthermore, we present the challenge that this type of modeling is now ready to tackle: its integration with intracellular networks, and its formalisms, to understand crosstalks underlying systems level properties, ultimate aim of multi-scale models. Specifically, we discuss and illustrate how such an integration may be realized, by integrating a minimal logical model of the cell cycle with a metabolic network.


Assuntos
Ciclo Celular , Regulação da Expressão Gênica , Micologia/tendências , Saccharomyces cerevisiae/fisiologia , Simulação por Computador , Modelos Biológicos , Saccharomyces cerevisiae/genética
9.
Angew Chem Int Ed Engl ; 52(30): 7795-9, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23788447

RESUMO

Golden aryne? Gold aryne complexes are inferred as transition states in dual gold-catalyzed cyclizations of cis-enediynes (see scheme; DCE = 1,2-dichloroethane). They are better described as ortho-aurophenyl cations, which react with weak nucleophiles and undergo facile intramolecular insertions into C(sp(3))-H bonds. Indanes, fused heteroarenes, and phenol derivatives are readily prepared using this method.


Assuntos
Enedi-Inos/química , Ouro/química , Compostos Heterocíclicos/química , Fenóis/química , Catálise , Ciclização , Enedi-Inos/metabolismo , Compostos Heterocíclicos/metabolismo , Ligação de Hidrogênio , Estrutura Molecular , Fenóis/metabolismo , Estereoisomerismo
10.
Methods Mol Biol ; 2658: 105-125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37024698

RESUMO

Whole genome sequencing of human fungal pathogens has revolutionized the speed and accuracy in which sequence variants that cause antifungal resistance can be identified. Genome rearrangements resulting in copy number variation (CNV) are a significant source of acquired antifungal drug resistance across diverse fungal species. Some CNVs are transient in nature, while other CNVs are stable and well tolerated even in the absence of antifungal drugs. By visualizing whole genome sequencing read depth as a function of genomic location, CNVs and CNV breakpoints (genomic positions where the copy number changes occur relative to the rest of the genome) are rapidly identified. A similar analysis can be used to visualize allele ratio changes that occur across the genomes of heterozygous fungal species, both in the presence and absence of CNVs. This protocol walks through the bioinformatic analysis of CNVs and allele ratios utilizing free, open-source visualization tools. We provide code to use with an example dataset (matched antifungal drug-sensitive and drug-resistant Candida albicans isolates) and notes on how to expand this protocol to other fungal genomes.


Assuntos
Candida albicans , Variações do Número de Cópias de DNA , Humanos , Candida albicans/genética , Antifúngicos/farmacologia , Alelos , Sequenciamento Completo do Genoma
11.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36986552

RESUMO

Irreversible myocardial injury causes the exhaustion of cellular adenosine triphosphate (ATP) contributing to heart failure (HF). Cyclocreatine phosphate (CCrP) was shown to preserve myocardial ATP during ischemia and maintain cardiac function in various animal models of ischemia/reperfusion. We tested whether CCrP administered prophylactically/therapeutically prevents HF secondary to ischemic injury in an isoproterenol (ISO) rat model. Thirty-nine rats were allocated into five groups: control/saline, control/CCrP, ISO/saline (85 and 170 mg/kg/day s.c. for 2 consecutive days), and ISO/CCrP (0.8 g/kg/day i.p.) either administrated 24 h or 1 h before ISO administration (prophylactic regimen) or 1 h after the last ISO injection (therapeutic regimen) and then daily for 2 weeks. CCrP protected against ISO-induced CK-MB elevation and ECG/ST changes when administered prophylactically or therapeutically. CCrP administered prophylactically decreased heart weight, hs-TnI, TNF-α, TGF-ß, and caspase-3, as well as increased EF%, eNOS, and connexin-43, and maintained physical activity. Histology indicated a marked decrease in cardiac remodeling (fibrin and collagen deposition) in the ISO/CCrP rats. Similarly, therapeutically administered CCrP showed normal EF% and physical activity, as well as normal serum levels of hs-TnI and BNP. In conclusion, the bioenergetic/anti-inflammatory CCrP is a promising safe drug against myocardial ischemic sequelae, including HF, promoting its clinical application to salvage poorly functioning hearts.

12.
Anesthesiology ; 116(5): 1013-24, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22417967

RESUMO

BACKGROUND: Gabapentin is most commonly prescribed for chronic pain, but acute perioperative effects, including preemptive analgesia and hemodynamic stabilization, have been reported. Adrenal chromaffin cells are a widely used model to investigate neurosecretion, and adrenal catecholamines play important physiologic roles and contribute to the acute stress response. However, the effects of gabapentin on adrenal catecholamine release have never been tested. METHODS: Primary cultures of bovine adrenal chromaffin cells were treated with gabapentin or vehicle for 18-24 h. The authors quantified catecholamine secretion from dishes of cells using high-performance liquid chromatography and resolved exocytosis of individual secretory vesicles from single cells using carbon fiber amperometry. Voltage-gated calcium channel currents were recorded using patch clamp electrophysiology and intracellular [Ca2+] using fluorescent imaging. RESULTS: Gabapentin produced statistically significant reductions in catecholamine secretion evoked by cholinergic agonists (24 ± 3%, n = 12) or KCl (16 ± 4%, n = 8) (mean ± SEM) but did not inhibit Ca2+ entry or calcium channel currents. Amperometry (n = 51 cells) revealed that gabapentin inhibited the number of vesicles released upon stimulation, with no change in quantal size or kinetics of these unitary events. CONCLUSIONS: The authors show Ca2+ entry was not inhibited by gabapentin but was less effective at triggering vesicle fusion. The work also demonstrates that chromaffin cells are a useful model for additional investigation of the cellular mechanism(s) by which gabapentin controls neurosecretion. In addition, it identifies altered adrenal catecholamine release as a potential contributor to some of the beneficial perioperative effects of gabapentin.


Assuntos
Glândulas Suprarrenais/metabolismo , Aminas/farmacologia , Catecolaminas/antagonistas & inibidores , Catecolaminas/metabolismo , Células Cromafins/efeitos dos fármacos , Células Cromafins/metabolismo , Ácidos Cicloexanocarboxílicos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido gama-Aminobutírico/farmacologia , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/efeitos dos fármacos , Animais , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Bovinos , Agonistas Colinérgicos/farmacologia , Relação Dose-Resposta a Droga , Gabapentina , Hemodinâmica/fisiologia , Técnicas In Vitro , Técnicas de Patch-Clamp , Cloreto de Potássio/antagonistas & inibidores , Cloreto de Potássio/farmacologia , Vesículas Secretórias/efeitos dos fármacos
13.
mBio ; 13(4): e0084222, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862787

RESUMO

Antifungal drug resistance and tolerance pose a serious threat to global public health. In the human fungal pathogen, Candida auris, resistance to triazole, polyene, and echinocandin antifungals is rising, resulting in multidrug resistant isolates. Here, we use genome analysis and in vitro evolution of 17 new clinical isolates of C. auris from clades I and IV to determine how quickly resistance mutations arise, the stability of resistance in the absence of drug, and the impact of genetic background on evolutionary trajectories. We evolved each isolate in the absence of drug as well as in low and high concentrations of fluconazole. In just three passages, we observed genomic and phenotypic changes including karyotype alterations, aneuploidy, acquisition of point mutations, and increases in MIC values within the populations. Fluconazole resistance was stable in the absence of drug, indicating little to no fitness cost associated with resistance. Importantly, two isolates substantially increased resistance to ≥256 µg/mL fluconazole. Multiple evolutionary pathways and mutations associated with increased fluconazole resistance occurred simultaneously within the same population. Strikingly, the subtelomeric regions of C. auris were highly dynamic as deletion of multiple genes near the subtelomeres occurred during the three passages in several populations. Finally, we discovered a mutator phenotype in a clinical isolate of C. auris. This isolate had elevated mutation rates compared to other isolates and acquired substantial resistance during evolution in vitro and in vivo supporting that the genetic background of clinical isolates can have a significant effect on evolutionary potential. IMPORTANCE Drug resistant Candida auris infections are recognized by the CDC as an urgent threat. Here, we obtained and characterized a set of clinical isolates of C. auris including multiple isolates from the same patient. To understand how drug resistance arises, we evolved these isolates and found that resistance to fluconazole, the most commonly prescribed antifungal, can occur rapidly and that there are multiple pathways to resistance. During our experiment, resistance was gained, but it was not lost, even in the absence of drug. We also found that some C. auris isolates have higher mutation rates than others and are primed to acquire antifungal resistance mutations. Furthermore, we found that multidrug resistance can evolve within a single patient. Overall, our results highlight the high stability and high rates of acquisition of antifungal resistance of C. auris that allow evolution of pan-resistant, transmissible isolates in the clinic.


Assuntos
Antifúngicos , Fluconazol , Antifúngicos/farmacologia , Candida , Candida auris , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Genômica , Humanos , Testes de Sensibilidade Microbiana
14.
Trans Am Clin Climatol Assoc ; 122: 138-49, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21686217

RESUMO

The author was privileged to be an early contributor to the concept that cell adhesion molecules, the leukocyte (ß2) integrins, play a pivotal role in the acute inflammatory process. For the author, this began with the development of a monoclonal antibody (anti-Mo1) that identified a differentiation antigen on the surface of human myeloid cells (including neutrophils, monocytes, and natural killer (NK) cells). Serendipitously, it was discovered that the Mo1 antigen was the heterodimeric glycoprotein (gp155,95) absent from the surface of neutrophils isolated from patients with adhesion defects in vitro and a syndrome characterized by chronic, life-threatening infections in vivo (a syndrome now termed leukocyte adhesion deficiency, type 1) (LAD-1). Collaborative efforts with other investigators (including members of the ACCA) revealed that patients with LAD-1 exhibited genetic mutations on chromosome 21 resulting in absent or diminished expression of a class of 4 surface adhesion molecules (now termed CD11a/CD18, CD11b/CD18, CD11c/CD18, and CD11d/CD18) known as the leukocyte or ß2 family of integrins. Knowledge of the role of the ß2 integrins in the acute inflammatory response led to the development of effective gene therapy strategies to treat LAD-1 in preclinical animal models and to the comprehensive testing of anti-integrin antibodies as anti-inflammatory agents to prevent organ damage as a complication of acute inflammation. This retrospective provides one illustration of the potential of bench-to-bedside research to generate new knowledge of clinical significance.


Assuntos
Pesquisa Biomédica/história , Antígenos CD18/história , Inflamação/história , Síndrome da Aderência Leucocítica Deficitária/história , Animais , Anti-Inflamatórios/história , Distinções e Prêmios , História do Século XX , História do Século XXI , Humanos , Inflamação/imunologia , Inflamação/terapia , Síndrome da Aderência Leucocítica Deficitária/imunologia , Síndrome da Aderência Leucocítica Deficitária/terapia
15.
Genetics ; 218(2)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33837402

RESUMO

Candida albicans is a prevalent human fungal pathogen. Rapid genomic change, due to aneuploidy, is a common mechanism that facilitates survival from multiple types of stresses including the few classes of available antifungal drugs. The stress survival of aneuploids occurs despite the fitness costs attributed to most aneuploids growing under idealized lab conditions. Systematic study of the aneuploid state in C. albicans has been hindered by the lack of a comprehensive collection of aneuploid strains. Here, we describe a collection of diploid C. albicans aneuploid strains, each carrying one extra copy of each chromosome, all from the same genetic background. We tested the fitness of this collection under several physiological conditions including shifts in pH, low glucose, oxidative stress, temperature, high osmolarity, membrane stress, and cell wall stress. We found that most aneuploids, under most conditions, were less fit than their euploid parent, yet there were specific conditions under which specific aneuploid isolates provided a fitness benefit relative to the euploid parent strain. Importantly, this fitness benefit was attributable to the change in the copy number of specific chromosomes. Thus, C. albicans can tolerate aneuploidy of each chromosome and some aneuploids confer improved growth under conditions that the yeast encounters in its host niches.


Assuntos
Candida albicans/genética , Cromossomos Fúngicos/genética , Aptidão Genética , Trissomia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Farmacorresistência Fúngica/genética , Genoma Fúngico , Interações entre Hospedeiro e Microrganismos/genética , Humanos
16.
ACS Omega ; 6(46): 31282-31291, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34841172

RESUMO

Cyclocreatine and its water-soluble derivative, cyclocreatine phosphate (CCrP), are potent cardioprotective drugs. Based on recent animal studies, CCrP, FDA-awarded Orphan Drug Designation, has a promising role in increasing the success rate of patients undergoing heart transplantation surgery by preserving donor hearts during transportation and improving the recovery of transplanted hearts in recipient patients. In addition, CCrP is under investigation as a promising treatment for creatine transporter deficiency, an X-linked inborn error resulting in a poor quality of life for both the patients and the caregiver. A newly designed molecularly imprinted polymer (MIP) material was fabricated by the anodic electropolymerization of o-phenylenediamine on screen-printed carbon electrodes and was successfully applied as an impedimetric sensor for CCrP determination to dramatically reduce the analysis time during both the clinical trial phases and drug development process. To enhance the overall performance of the proposed sensor, studies were performed to optimize the electropolymerization conditions, incubation time, and pH of the background electrolyte. Scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry were used to characterize the behavior of the developed ultrathin MIP membrane. The CCrP-imprinted polymer has a high recognition affinity for the template molecule because of the formation of 3D complementary cavities within the polymer. The developed MIP impedimetric sensor had good linearity, repeatability, reproducibility, and stability within the linear concentration range of 1 × 10-9 to 1 × 10-7 mol/L, with a low limit of detection down to 2.47 × 10-10 mol/L. To verify the applicability of the proposed sensor, it was used to quantify CCrP in spiked plasma samples.

17.
Nat Commun ; 12(1): 6151, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686660

RESUMO

The fungus Candida albicans is an opportunistic pathogen that can exploit imbalances in microbiome composition to invade its human host, causing pathologies ranging from vaginal candidiasis to fungal sepsis. Bacteria of the genus Lactobacillus are colonizers of human mucosa and can produce compounds with bioactivity against C. albicans. Here, we show that some Lactobacillus species produce a small molecule under laboratory conditions that blocks the C. albicans yeast-to-filament transition, an important virulence trait. It remains unexplored whether the compound is produced in the context of the human host. Bioassay-guided fractionation of Lactobacillus-conditioned medium linked this activity to 1-acetyl-ß-carboline (1-ABC). We use genetic approaches to show that filamentation inhibition by 1-ABC requires Yak1, a DYRK1-family kinase. Additional biochemical characterization of structurally related 1-ethoxycarbonyl-ß-carboline confirms that it inhibits Yak1 and blocks C. albicans biofilm formation. Thus, our findings reveal Lactobacillus-produced 1-ABC can prevent the yeast-to-filament transition in C. albicans through inhibition of Yak1.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Lactobacillus/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Antifúngicos/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Candida albicans/patogenicidade , Candidíase/microbiologia , Carbolinas/metabolismo , Carbolinas/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifas/efeitos dos fármacos , Hifas/genética , Hifas/patogenicidade , Mutação , Inibidores de Proteínas Quinases/metabolismo , Ratos , Virulência/efeitos dos fármacos , Quinases Dyrk
19.
Elife ; 92020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32687060

RESUMO

Previously, we identified long repeat sequences that are frequently associated with genome rearrangements, including copy number variation (CNV), in many diverse isolates of the human fungal pathogen Candida albicans (Todd et al., 2019). Here, we describe the rapid acquisition of novel, high copy number CNVs during adaptation to azole antifungal drugs. Single-cell karyotype analysis indicates that these CNVs appear to arise via a dicentric chromosome intermediate and breakage-fusion-bridge cycles that are repaired using multiple distinct long inverted repeat sequences. Subsequent removal of the antifungal drug can lead to a dramatic loss of the CNV and reversion to the progenitor genotype and drug susceptibility phenotype. These findings support a novel mechanism for the rapid acquisition of antifungal drug resistance and provide genomic evidence for the heterogeneity frequently observed in clinical settings.


Assuntos
Adaptação Biológica , Antifúngicos/farmacologia , Candida albicans/fisiologia , Variações do Número de Cópias de DNA , Farmacorresistência Fúngica/genética , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Genótipo , Cariótipo , Análise de Célula Única
20.
J Am Board Fam Med ; 33(1): 71-79, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31907248

RESUMO

PURPOSE: Patients are able to participate in quality-of-life (QOL) discussions, but clinicians struggle to incorporate this information into encounters and shared decision making. We designed a study to determine if a clinician-initiated prompt could make patient visits more goal directed. METHODS: Patients were given a previsit questionnaire that included QOL questions. Physicians in the control were given no further prompting. The intervention physicians were prompted to ask a QOL question: what things are you unable to do because of your health problems today? A 2-pronged design was used: 1 prepost group where 3 physicians participated in 5 control and 5 intervention encounters (n = 30) and a randomized group in which 11 physicians and their patients were randomly assigned to control or intervention groups (n = 30). Video recordings of the encounters were reviewed to determine if QOL goals were mentioned and if they were utilized in decision making. RESULTS: Fifty-seven (95%) of the 60 patients provided written answers to at least 1 of the QOL questions on the intake form. QOL goals were mentioned during intervention encounters more often than in control groups. QOL information was used in shared decision making in only 4 of the 30 (13%) intervention encounters. CONCLUSIONS: Physicians were able to engage in QOL discussions with their patients, but did not translate that information to medical decision making. More research is needed to understand why clinicians opt not to use QOL information and how to make communication more goal directed.


Assuntos
Atitude do Pessoal de Saúde , Relações Médico-Paciente , Médicos/psicologia , Padrões de Prática Médica , Qualidade de Vida , Idoso , Medicina de Família e Comunidade/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA