Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 17(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27993914

RESUMO

The eukaryotic cell cycle is robustly designed, with interacting molecules organized within a definite topology that ensures temporal precision of its phase transitions. Its underlying dynamics are regulated by molecular switches, for which remarkable insights have been provided by genetic and molecular biology efforts. In a number of cases, this information has been made predictive, through computational models. These models have allowed for the identification of novel molecular mechanisms, later validated experimentally. Logical modeling represents one of the youngest approaches to address cell cycle regulation. We summarize the advances that this type of modeling has achieved to reproduce and predict cell cycle dynamics. Furthermore, we present the challenge that this type of modeling is now ready to tackle: its integration with intracellular networks, and its formalisms, to understand crosstalks underlying systems level properties, ultimate aim of multi-scale models. Specifically, we discuss and illustrate how such an integration may be realized, by integrating a minimal logical model of the cell cycle with a metabolic network.


Assuntos
Ciclo Celular , Regulação da Expressão Gênica , Micologia/tendências , Saccharomyces cerevisiae/fisiologia , Simulação por Computador , Modelos Biológicos , Saccharomyces cerevisiae/genética
2.
Front Physiol ; 9: 878, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116195

RESUMO

CD4+ T cells provide cell-mediated immunity in response to various antigens. During an immune response, naïve CD4+ T cells differentiate into specialized effector T helper (Th1, Th2, and Th17) cells and induced regulatory (iTreg) cells based on a cytokine milieu. In recent studies, complex phenotypes resembling more than one classical T cell lineage have been experimentally observed. Herein, we sought to characterize the capacity of T cell differentiation in response to the complex extracellular environment. We constructed a comprehensive mechanistic (logical) computational model of the signal transduction that regulates T cell differentiation. The model's dynamics were characterized and analyzed under 511 different environmental conditions. Under these conditions, the model predicted the classical as well as the novel complex (mixed) T cell phenotypes that can co-express transcription factors (TFs) related to multiple differentiated T cell lineages. Analyses of the model suggest that the lineage decision is regulated by both compositions and dosage of signals that constitute the extracellular environment. In this regard, we first characterized the specific patterns of extracellular environments that result in novel T cell phenotypes. Next, we predicted the inputs that can regulate the transition between the canonical and complex T cell phenotypes in a dose-dependent manner. Finally, we predicted the optimal levels of inputs that can simultaneously maximize the activity of multiple lineage-specifying TFs and that can drive a phenotype toward one of the co-expressed TFs. In conclusion, our study provides new insights into the plasticity of CD4+ T cell differentiation, and also acts as a tool to design testable hypotheses for the generation of complex T cell phenotypes by various input combinations and dosages.

3.
PLoS One ; 7(10): e45780, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049686

RESUMO

It has been suggested that irreducible sets of states in Probabilistic Boolean Networks correspond to cellular phenotype. In this study, we identify such sets of states for each phase of the budding yeast cell cycle. We find that these "ergodic sets" underly the cyclin activity levels during each phase of the cell cycle. Our results compare to the observations made in several laboratory experiments as well as the results of differential equation models. Dynamical studies of this model: (i) indicate that under stochastic external signals the continuous oscillating waves of cyclin activity and the opposing waves of CKIs emerge from the logic of a Boolean-based regulatory network without the need for specific biochemical/kinetic parameters; (ii) suggest that the yeast cell cycle network is robust to the varying behavior of cell size (e.g., cell division under nitrogen deprived conditions); (iii) suggest the irreversibility of the Start signal is a function of logic of the G1 regulon, and changing the structure of the regulatory network can render start reversible.


Assuntos
Ciclo Celular/fisiologia , Redes Reguladoras de Genes/fisiologia , Modelos Biológicos , Fenótipo , Probabilidade , Saccharomycetales/fisiologia , Ciclinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA