Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 74(6): 1990-2004, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36575924

RESUMO

Pentyl leafy volatiles (PLV) are C5 volatiles produced from polyunsaturated fatty acids by plant 13-lipoxygenases (13-LOX) in concert with other lipid metabolizing enzymes. Unlike related C6 volatiles (GLV, green leafy volatiles), little is known about the biosynthesis and physiological function of PLV in plants. Zea mays LOX6 (ZmLOX6) is an unusual plant LOX that lacks lipid oxygenation activity but acts as a hydroperoxide lyase hypothesized to be specifically involved in PLV synthesis. We overexpressed ZmLOX6 in Arabidopsis thaliana and established that it indeed produces PLVs. Overexpression of ZmLOX6 caused a mild chlorotic phenotype, and induced a similar phenotype in untransformed Col-0 plants grown in close proximity, suggesting that airborne signals, such as PLVs, are responsible for the phenotype. PLV production, dependency on the substrate from endogenous 13-LOX(s), and likely competition with endogenous 13-oxylipin pathway were consistent with the model that ZmLOX6 functions as a hydroperoxide lyase. The abundance of individual PLVs was differentially affected by ZmLOX6 overexpression, and the new profile indicated that ZmLOX6 had reaction products distinct from endogenous PLV-producing activities in the Arabidopsis host plants. ZmLOX6 overexpression also induced a new hormonal status, which is likely responsible for increased attraction and propagation of aphids, nonetheless improving host plant tolerance to aphid infestation.


Assuntos
Afídeos , Arabidopsis , Animais , Arabidopsis/metabolismo , Afídeos/fisiologia , Zea mays/genética , Plantas , Folhas de Planta/metabolismo , Lipídeos
2.
Genes (Basel) ; 14(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37761872

RESUMO

Foliage-feeding fall armyworm (FAW; Spodoptera frugiperda) and root-feeding western corn rootworm (WCR; Diabrotica virgifera virgifera) are maize (Zea mays L.) pests that cause significant yield losses. Jasmonic acid (JA) plays a pivotal defense role against insects. 12-oxo-phytodienoic acid (12-OPDA) is converted into JA by peroxisome-localized OPDA reductases (OPR). However, little is known about the physiological functions of cytoplasmic OPRs. Here, we show that disruption of ZmOPR2 reduced wound-induced JA production and defense against FAW while accumulating more JA catabolites. Overexpression of ZmOPR2 in Arabidopsis enhanced JA production and defense against beet armyworm (BAW; Spodoptera exigua). In addition, lox10opr2 double mutants were more susceptible than either single mutant, suggesting that ZmOPR2 and ZmLOX10 uniquely and additively contributed to defense. In contrast to the defensive roles of ZmOPR2 and ZmLOX10 in leaves, single mutants did not display any alteration in root herbivory defense against WCR. Feeding on lox10opr2 double mutants resulted in increased WCR mortality associated with greater herbivory-induced production of insecticidal death acids and ketols. Thus, ZmOPR2 and ZmLOX10 cooperatively inhibit the synthesis of these metabolites during herbivory by WCR. We conclude that ZmOPR2 and ZmLOX10 regulate JA-mediated resistance in leaves against FAW while suppressing insecticidal oxylipin synthesis in roots during WCR infestation.

3.
Front Plant Sci ; 12: 719587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512698

RESUMO

Volatiles are important airborne chemical messengers that facilitate plant adaptation to a variety of environmental challenges. Lipoxygenases (LOXs) produce a bouquet of non-volatile and volatile oxylipins, including C6 green leaf volatiles (GLVs), which are involved in a litany of plant physiological processes. GLVs are emitted by a diverse array of plant species, and are the best-known group of LOX-derived volatiles. Five-carbon pentyl leaf volatiles (PLVs) represent another widely emitted group of LOX-derived volatiles that share structural similarity to GLVs, however, relatively little is known about their biosynthesis or biological activity. In this study, we utilized PLV-deficient mutants of maize and Arabidopsis and exogenous PLV applications to elucidate the biosynthetic order of individual PLVs. We further measured PLVs and GLVs after tissue disruption of leaves by two popular methods of volatile elicitation, wounding and freeze-thawing. Freeze-thawing distorted the volatile metabolism of both GLVs and PLVs relative to wounding, though this distortion differed between the two groups of volatiles. These results suggest that despite the structural similarity of these two volatile groups, they are differentially metabolized. Collectively, these results have allowed us to produce the most robust PLV pathway to date. To better elucidate the biological activity of PLVs, we show that PLVs induce maize resistance to the anthracnose pathogen, Colletotrichum graminicola, the effect opposite to that conferred by GLVs. Further analysis of PLV-treated and infected maize leaves revealed that PLV-mediated resistance is associated with early increases of oxylipin α- and γ-ketols, and later increases of oxylipin ketotrienes, hydroxytrienes, and trihydroxydienes. Ultimately, this study has produced the most up-to-date pathway for PLV synthesis, and reveals that PLVs can facilitate pathogen resistance through induction of select oxylipins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA