Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 133(9): 2685-2694, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32507913

RESUMO

KEY MESSAGE: A novel leaf rust resistance gene, LrM, introgressed from Aegilops markgrafii and mapped on chromosome 2AS using SSR- and SNP-based PCR markers will aid in broadening the genetic base of rust resistance in wheat. A new leaf rust resistance gene tentatively named LrM was introgressed from the diploid non-progenitor species Ae. markgrafii (2n = 2x = 14, genome CC) into common wheat using the nulli-5B mechanism. The introgression line ER9-700 showed a high degree of resistance against a wide spectrum of Puccinia triticina pathotypes. Genetic analysis was performed using the F1, F2, F2:3 and BC1F1 generations derived from the cross ER9-700/Agra Local. The results showed a single dominant gene for leaf rust resistance. The resistance gene LrM was mapped on chromosome arm 2AS using SSR- and SNP-based PCR markers. Preliminary mapping with SSR markers in the F2:3 population from the cross ER9-700/Agra Local identified two SSR markers flanking the LrM. SNPs were identified in the genomic region flanked by SSR markers, and SNP-based PCR markers were developed to construct the final map. Three SNP-based PCR markers co-segregated and mapped closest to the resistance gene at a distance of 2 cM. The gene LrM was distinguished from all the other genes designated and mapped on chromosome arm 2AS by molecular markers and rust reaction. All five markers used in the mapping amplified identical alleles in the donor Ae. markgrafii accession and introgression line ER9-700. The chromosomal location and rust reaction suggest that LrM is a novel leaf rust resistance gene that may be useful in broadening the genetic base of leaf rust resistance in wheat.


Assuntos
Aegilops/genética , Genes de Plantas , Doenças das Plantas/genética , Triticum/genética , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Repetições de Microssatélites , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Triticum/microbiologia
2.
Genome ; 60(12): 1076-1085, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29125785

RESUMO

Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been transferred from Ae. speltoides to bread wheat. In Selection2427, a bread wheat introgresed line with Ae. speltoides as the donor parent, a dominant gene for leaf rust resistance was mapped to the long arm of chromosome 3B (LrS2427). None of the Lr genes introgressed from Ae. speltoides have been mapped to chromosome 3B. Since none of the designated seedling leaf rust resistance genes have been located on chromosome 3B, LrS2427 seems to be a novel gene. Selection2427 showed a unique property typical of gametocidal genes, that when crossed to other bread wheat cultivars, the F1 showed partial pollen sterility and poor seed setting, whilst Selection2427 showed reasonable male and female fertility. Accidental co-transfer of gametocidal genes with LrS2427 may have occurred in Selection2427. Though LrS2427 did not show any segregation distortion and assorted independently of putative gametocidal gene(s), its utilization will be difficult due to the selfish behavior of gametocidal genes.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Infertilidade das Plantas/genética , Poaceae/genética , Cromossomos de Plantas/genética , Poaceae/imunologia , Poaceae/microbiologia , Pólen/genética
3.
Genetica ; 141(10-12): 431-41, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24129675

RESUMO

A study on mode of inheritance and mapping of fertility restorer (Rf) gene(s) using simple sequence repeat (SSR) markers was conducted in a cross of male sterile line 2041A having Triticum timopheevi cytoplasm and a restorer line PWR4099 of common wheat (Triticum aestivum L.). The F1 hybrid was completely fertile indicating that fertility restoration is a dominant trait. Based on the pollen fertility and seed set of bagged spikes in F2 generation, the individual plants were classified into fertile and sterile groups. Out of 120 F2 plants, 97 were fertile and 23 sterile (based on pollen fertility) while 98 plants set ≥ 5 seeds/spike and 22 produced ≤ 4 or no seed. The observed frequency fits well into Mendelian ratio of 3 fertile: 1 sterile with χ(2) value of 2.84 for pollen fertility and 2.17 for seed setting indicating that the fertility restoration is governed by a single dominant gene in PWR4099. The three linked SSR markers, Xwmc503, Xgwm296 and Xwmc112 located on the chromosome 2DS were placed at a distance of 3.3, 5.8 and 6.7 cM, respectively, from the Rf gene. Since, no known Rf gene is located on the chromosome arm 2DS, the Rf gene in PWR4099 is a new gene and proposed as Rf8. The closest SSR marker, Xwmc503, linked to the Rf8 was validated in a set of Rf, maintainer and cytoplasmic male sterile lines. The closely linked SSR marker Xwmc503 may be used in marker-assisted backcross breeding facilitating the transfer of fertility restoration gene Rf8 into elite backgrounds with ease.


Assuntos
Citoplasma/genética , Genes de Plantas , Repetições de Microssatélites , Infertilidade das Plantas/genética , Pólen/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Ligação Genética , Genótipo , Fenótipo , Folhas de Planta/genética , Triticum/fisiologia
4.
PLoS One ; 11(6): e0156528, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27280445

RESUMO

Water availability is a major limiting factor for wheat (Triticum aestivum L.) production in rain-fed agricultural systems worldwide. Root architecture is important for water and nutrition acquisition for all crops, including wheat. A set of 158 diverse wheat genotypes of Australian (72) and Indian (86) origin were studied for morpho-agronomical traits in field under irrigated and drought stress conditions during 2010-11 and 2011-12.Out of these 31 Indian wheat genotypes comprising 28 hexaploid (Triticum aestivum L.) and 3 tetraploid (T. durum) were characterized for root traits at reproductive stage in polyvinyl chloride (PVC) pipes. Roots of drought tolerant genotypes grew upto137cm (C306) as compared to sensitive one of 63cm with a mean value of 94.8cm. Root architecture traits of four drought tolerant (C306, HW2004, HD2888 and NI5439) and drought sensitive (HD2877, HD2012, HD2851 and MACS2496) genotypes were also observed at 6 and 9 days old seedling stage. The genotypes did not show any significant variation for root traits except for longer coleoptiles and shoot and higher absorptive surface area in drought tolerant genotypes. The visible evaluation of root images using WinRhizo Tron root scanner of drought tolerant genotype HW2004 indicated compact root system with longer depth while drought sensitive genotype HD2877 exhibited higher horizontal root spread and less depth at reproductive stage. Thirty SSR markers were used to study genetic variation which ranged from 0.12 to 0.77 with an average value of 0.57. The genotypes were categorized into three subgroups as highly tolerant, sensitive, moderately sensitive and tolerant as intermediate group based on UPGMA cluster, STRUCTURE and principal coordinate analyses. The genotypic clustering was positively correlated to grouping based on root and morpho-agronomical traits. The genetic variability identified in current study demonstrated these traits can be used to improve drought tolerance and association mapping.


Assuntos
Aclimatação/fisiologia , Secas , Raízes de Plantas/fisiologia , Plântula/fisiologia , Estresse Fisiológico , Triticum/fisiologia , Austrália , Variação Genética/genética , Genótipo , Fenótipo , Chuva , Reprodução , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA