Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Plant J ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761363

RESUMO

Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.

2.
Plant Cell Physiol ; 64(8): 920-932, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37384580

RESUMO

Xylem embolism is one of the possible outcomes of decreasing xylem pressure when plants face drought. Recent studies have proposed a role for non-structural carbohydrates (NSCs) in osmotic pressure generation, required for refilling embolized conduits. Potted cuttings of grapevine Grenache and Barbera, selected for their adaptation to different climatic conditions, were subjected to a drought stress followed by re-irrigation. Stem embolism rate and its recovery were monitored in vivo by X-ray micro-computed tomography (micro-CT). The same plants were further analyzed for xylem conduit dimension and NSC content. Both cultivars significantly decreased Ψpd in response to drought and recovered from xylem embolism after re-irrigation. However, although the mean vessel diameter was similar between the cultivars, Barbera was more prone to embolism. Surprisingly, vessel diameter was apparently reduced during recovery in this cultivar. Hydraulic recovery was linked to sugar content in both cultivars, showing a positive relationship between soluble NSCs and the degree of xylem embolism. However, when starch and sucrose concentrations were considered separately, the relationships showed cultivar-specific and contrasting trends. We showed that the two cultivars adopted different NSC-use strategies in response to drought, suggesting two possible scenarios driving conduit refilling. In Grenache, sucrose accumulation seems to be directly linked to embolism formation and possibly sustains refilling. In Barbera, maltose/maltodextrins could be involved in a conduit recovery strategy via the formation of cell-wall hydrogels, likely responsible for the reduction of conduit lumen detected by micro-CT.


Assuntos
Carboidratos , Secas , Microtomografia por Raio-X , Xilema/fisiologia , Sacarose , Água
3.
Glob Chang Biol ; 28(22): 6640-6652, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054311

RESUMO

Predicting the consequences of climate change is of utmost importance to mitigate impacts on vulnerable ecosystems; plant hydraulic traits are particularly useful proxies for predicting functional disruptions potentially occurring in the near future. This study assessed the current and future regional patterns of leaf water potential at turgor loss point (Ψtlp ) by measuring and projecting the Ψtlp of 166 vascular plant species (159 angiosperms and 7 gymnosperms) across a large climatic range spanning from alpine to Mediterranean areas in NE Italy. For angiosperms, random forest models predicted a consistent shift toward more negative values in low-elevation areas, whereas for gymnosperms the pattern was more variable, particularly in the alpine sector (i.e., Alps and Prealps). Simulations were also developed to evaluate the number of threatened species under two Ψtlp plasticity scenarios (low vs. high plasticity), and it was found that in the worst-case scenario approximately 72% of the angiosperm species and 68% of gymnosperms within a location were at risk to exceed their physiological plasticity. The different responses to climate change by specific clades might produce reassembly in natural communities, undermining the resilience of natural ecosystems to climate change.


Assuntos
Mudança Climática , Magnoliopsida , Cycadopsida , Secas , Ecossistema , Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia
4.
New Phytol ; 231(1): 108-121, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33811346

RESUMO

Nonstructural carbohydrates (NSCs) have been suggested to affect xylem transport under fluctuating water availability, but conclusive evidence is still lacking. We tested the effect of shade-induced NSC depletion on xylem vulnerability to embolism and hydraulic recovery on Populus nigra saplings. Vulnerability was assessed in light-exposed (L) and shaded (S) plants with the hydraulic method, and in vivo with the optical method and X-ray micro-computed tomography. Plants were stressed to 80% loss of hydraulic conductance (PLC) and re-irrigated to check for possible recovery. We measured PLC, bark and wood NSC content, as well as xylem sap pH, surface tension (γsap ) and sugar concentration, before, during and after drought. Shading induced depletion of stem NSC (mainly starch) reserves. All methods converged in indicating higher xylem vulnerability in S than in L plants. This difference was not explained by xylem vessel and pit anatomy or by γsap . Shading impeded sap acidification and sugar accumulation during drought in S plants and prevented hydraulic recovery, which was observed in L plants. Our results highlight the importance of stem NSCs to sustain xylem hydraulic functioning during drought and suggest that light and/or adequate stem NSC thresholds are required to trigger xylem sap chemical changes involved in embolism recovery.


Assuntos
Embolia , Populus , Carboidratos , Secas , Água , Microtomografia por Raio-X , Xilema
5.
New Phytol ; 229(1): 199-212, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32772381

RESUMO

Drought-induced tree mortality frequently occurs in patches with different spatial and temporal distributions, which is only partly explained by inter- and intraspecific variation in drought tolerance. We investigated whether bedrock properties, with special reference to rock water storage capacity, affects tree water status and drought response in a rock-dominated landscape. We measured primary porosity and available water content of breccia (B) and dolostone (D) rocks. Saplings of Fraxinus ornus were grown in pots filled with soil or soil mixed with B and D rocks, and subjected to an experimental drought. Finally, we measured seasonal changes in water status of trees in field sites overlying B or D bedrock. B rocks were more porous and stored more available water than D rocks. Potted saplings grown with D rocks had less biomass and suffered more severe water stress than those with B rocks. Trees in sites with B bedrock had more favourable water status than those on D bedrock which also suffered drought-induced canopy dieback. Bedrock represents an important water source for plants under drought. Different bedrock features translate into contrasting below-ground water availability, leading to landscape-level heterogeneity of the impact of drought on tree water status and dieback.


Assuntos
Árvores , Água , Secas , Estações do Ano , Solo
6.
New Phytol ; 226(5): 1517-1529, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31958150

RESUMO

Magnetic resonance imaging (MRI) is a useful tool to image xylem embolism formation in plants. MRI scanners configured to accept intact plants are rare and expensive. Here, we investigate if affordable small-scale, custom-built low-field MRI scanners would suffice for the purpose. A small-scale, C-shaped permanent magnet was paired with open, plane parallel imaging gradients. The setup was small enough to fit between leaves or branches and offered open access for plant stems of arbitrary length. To counter the two main drawbacks of the system, low signal to noise and reduced magnetic field homogeneity, a multi-spin echo (MSE) pulse sequence was implemented, allowing efficient signal acquisition and quantitative imaging of water content and T2 signal relaxation. The system was tested visualizing embolism formation in Fagus sylvatica during bench dehydration. High-quality images of water content and T2 were readily obtained, which could be utilized to detect the cavitation of vessels smaller than could be spatially resolved. A multiplication of both map types yielded images in which filled xylem appeared with even greater contrast. T2 imaging with small-scale MRI devices allows straightforward visualization of the spatial and temporal dynamics of embolism formation and the derivation of vulnerability curves.


Assuntos
Embolia , Xilema , Imageamento por Ressonância Magnética , Folhas de Planta , Água
7.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878253

RESUMO

The xylem is a complex system that includes a network of dead conduits ensuring long-distance water transport in plants. Under ongoing climate changes, xylem embolism is a major and recurrent cause of drought-induced tree mortality. Non-structural carbohydrates (NSC) play key roles in plant responses to drought and frost stress, and several studies putatively suggest their involvement in the regulation of xylem water transport. However, a clear picture on the roles of NSCs in plant hydraulics has not been drawn to date. We summarize the current knowledge on the involvement of NSCs during embolism formation and subsequent hydraulic recovery. Under drought, sugars are generally accumulated in xylem parenchyma and in xylem sap. At drought-relief, xylem functionality is putatively restored in an osmotically driven process involving wood parenchyma, xylem sap and phloem compartments. By analyzing the published data on stem hydraulics and NSC contents under drought/frost stress and subsequent stress relief, we found that embolism build-up positively correlated to stem NSC depletion, and that the magnitude of post-stress hydraulic recovery positively correlated to consumption of soluble sugars. These findings suggest a close relationship between hydraulics and carbohydrate dynamics. We call for more experiments on hydraulic and NSC dynamics in controlled and field conditions.


Assuntos
Amido/metabolismo , Xilema/metabolismo , Carboidratos/fisiologia , Secas , Tecido Parenquimatoso/metabolismo , Árvores/metabolismo , Árvores/fisiologia
8.
Methods Mol Biol ; 2722: 51-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37897599

RESUMO

The vulnerability to xylem embolism is a key trait underlying species-specific drought tolerance of plants, and hence is critical for screening climate-resilient crops and understanding vegetation responses to drought and heat waves. Yet, accurate determination of embolism in plant's xylem is challenging, because most traditional hydraulic techniques are destructive and prone to artefacts. Hence, direct and in vivo synchrotron-based X-ray micro-CT observation of xylem conduits has emerged as a key reference technique for accurate quantification of vulnerability to xylem embolism. Micro-CT is nowadays a fundamental tool for studies of plant hydraulic architecture, and this chapter describes the fundamentals of acquisition and processing of micro-CT images of plant xylem.


Assuntos
Embolia , Síncrotrons , Microtomografia por Raio-X , Xilema , Secas , Água , Folhas de Planta/fisiologia
9.
Plants (Basel) ; 12(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446973

RESUMO

The pressure chamber is the most used tool for plant water status monitoring. However, species/cultivar and seasonal effects on protocols for reliable water potential determination have not been properly tested. In four grapevine cultivars and two times of the season (early season, Es; late season, Ls, under moderate drought), we assessed the maximum sample storage time before leaf water potential (Ψleaf) measurements and the minimum equilibration time for stem water potential (Ψstem) determination, taking 24 h leaf cover as control. In 'Pinot gris', Ψleaf already decreased after 1 h leaf storage in both campaigns, dropping by 0.4/0.5 MPa after 3 h, while in 'Refosk', it decreased by 0.1 MPa after 1 and 2 h in Es and Ls, respectively. In 'Merlot' and 'Merlot Kanthus', even 3 h storage did not affect Ψleaf. In Es, the minimum Ψstem equilibration was 1 h for 'Refosk' and 10 min for 'Pinot gris' and 'Merlot'. In Ls, 'Merlot Kanthus' required more than 2 h equilibration, while 1 h to 10 min was sufficient for the other cultivars. The observed cultivar and seasonal differences indicate that the proposed tests should be routinely performed prior to experiments to define ad hoc procedures for water status determination.

10.
Tree Physiol ; 43(10): 1784-1795, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37427987

RESUMO

Plant hydraulic traits related to leaf drought tolerance, like the water potential at turgor loss point (TLP) and the water potential inducing 50% loss of hydraulic conductance (P50), are extremely useful to predict the potential impacts of drought on plants. While novel techniques have allowed the inclusion of TLP in studies targeting a large group of species, fast and reliable protocols to measure leaf P50 are still lacking. Recently, the optical method coupled with the gas injection (GI) technique has been proposed as a possibility to speed up the P50 estimation. Here, we present a comparison of leaf optical vulnerability curves (OVcs) measured in three woody species, namely Acer campestre (Ac), Ostrya carpinifolia (Oc) and Populus nigra (Pn), based on bench dehydration (BD) or GI of detached branches. For Pn, we also compared optical data with direct micro-computed tomography (micro-CT) imaging in both intact saplings and cut shoots subjected to BD. Based on the BD procedure, Ac, Oc and Pn had P50 values of -2.87, -2.47 and -2.11 MPa, respectively, while the GI procedure overestimated the leaf vulnerability (-2.68, -2.04 and -1.54 MPa for Ac, Oc and Pn, respectively). The overestimation was higher for Oc and Pn than for Ac, likely reflecting the species-specific vessel lengths. According to micro-CT observations performed on Pn, the leaf midrib showed none or very few embolized conduits at -1.2 MPa, consistent with the OVcs obtained with the BD procedure but at odds with that derived on the basis of GI. Overall, our data suggest that coupling the optical method with GI might not be a reliable technique to quantify leaf hydraulic vulnerability since it could be affected by the 'open-vessel' artifact. Accurate detection of xylem embolism in the leaf vein network should be based on BD, preferably of intact up-rooted plants.


Assuntos
Acer , Embolia , Microtomografia por Raio-X , Folhas de Planta , Xilema , Água , Secas
11.
Plants (Basel) ; 11(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35161287

RESUMO

(1) Recent studies suggested that stem photosynthesis could favor bark water uptake and embolism recovery when stem segments are soaked in water under light conditions, but evidence for this phenomenon in drought-resistant Mediterranean species with photosynthetic stems is missing. (2) Embolism recovery upon immersion in water for 2 h-4 h under light was assessed (i) via a classical hydraulic method in leafless Fraxinus ornus and Olea europaea branch segments stressed to xylem water potentials (Yxyl) inducing ca. 50% loss of hydraulic conductivity (PLC) and (ii) via X-ray micro-CT imaging of the stem segments of drought-stressed potted F. ornus saplings. Hydraulic recovery was also assessed in vivo in intact drought-stressed F. ornus saplings upon soil re-irrigation. (3) Intact F. ornus plants recovered hydraulic function through root water uptake. Conversely, the soaked stem segments of both species did not refill embolized conduits, although Yxyl recovered to pre-stress levels (between -0.5 MPa and -0.2 MPa). (4) We hypothesize that xylem embolism recovery through bark water uptake, even in light conditions, may not be a common phenomenon in woody plants and/or that wounds caused by cutting short stem segments might inhibit the refilling process upon soaking.

12.
Plants (Basel) ; 9(2)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054113

RESUMO

Accurate predictions of species distribution under current and future climate conditions require modeling efforts based on clear mechanistic relationships between climate variables and plant physiological functions. Vulnerability of leaves to xylem embolism is a key mechanistic trait that might be included in these modeling efforts. Here, we propose a simple set-up to measure leaf vulnerability to embolism on the basis of the optical method using a smartphone, a light source, and a notebook. Our data show that this proposed set-up can adequately quantify the vulnerability to xylem embolism of leaf major veins in Populus nigra and Ostrya carpinifolia, producing values consistent with those obtained in temperate tree species with other methods, allowing virtually any laboratory to quantify species-specific drought tolerance on the basis of a sound mechanistic trait.

13.
Plant Physiol Biochem ; 145: 1-9, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31665662

RESUMO

The maintenance of hydraulic function during and after a drought event is crucial for tree survival, but the importance of non-structural carbohydrates (NSCs) in the recovery phase is still debated. We tested whether higher NSC availability facilitates post-drought hydraulic recovery, by applying a short-term drought (Sdr) and a long-term drought combined with shading (Ldr+sh) in Fraxinus ornus and Ostrya carpinifolia. Plants were then re-irrigated and recovery was checked 24 h later, by measuring water potential, stem percentage loss of hydraulic conductance (PLC) and NSC content. The relative magnitude of hydraulic and carbon constraints was also assessed in desiccated plants. During drought, PLC increased only in F. ornus, while it was maintained almost constant in O. carpinifolia due to tighter stomatal control of xylem pressure (i.e. more isohydric). In F. ornus, only Sdr plants maintained high NSC contents at the end of drought and, when re-irrigated, recovered PLC to control values. Whereas hydraulic failure was ubiquitous, only F. ornus depleted NSC reserves at mortality. Our results suggest that preserving higher NSC content at the end of a drought can be important for the hydraulic resilience of trees.


Assuntos
Betulaceae , Metabolismo dos Carboidratos , Secas , Fraxinus , Movimentos da Água , Betulaceae/fisiologia , Carboidratos/química , Fraxinus/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Árvores , Água/metabolismo , Xilema/fisiologia
14.
Tree Physiol ; 39(5): 717-728, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668841

RESUMO

Severe drought events threaten tree water transport system, productivity and survival. Woody angiosperms generally die when embolism-induced loss of hydraulic conductance (PLC) surpasses 80-90% under intense water shortage. However, the recovery capability and possible long-term carry-over effects of repeated drought events could dictate the fate of species' population under climate change scenarios. Potted saplings of European beech (Fagus sylvatica L.) were subjected to two drought cycles in two consecutive growing seasons, aiming to induce minimum leaf water potentials (Ψmd) of about -4 MPa, corresponding to hydraulic thresholds for survival of this species. In the first cycle, a well-irrigated (C) and a drought-stressed group (S) were formed, and, in the following summer, each group was divided in a well-irrigated and a drought-stressed one (four groups in total). The impact of the multiple drought events was assessed by measuring wood anatomical traits, biomass production, water relations, stem hydraulics and non-structural carbohydrate (NSC) content. We also investigated possible connections between stem hydraulics and carbon dynamics during the second drought event and following re-irrigation. S plants had lower Ψmd and maximum specific hydraulic conductivity (Ks) than C plants in the following growing season. Additionally, aboveground biomass production and leaf number were lower compared to C trees, resulting in lower water consumption. However, PLC was similar between groups, probably due to the production of new functional xylem in spring. The second drought event induced 85% PLC and promoted conversion of starch-to soluble sugars. Nevertheless, 1 week after re-irrigation, no embolism repair was observed and soluble sugars were reconverted to starch. The previous drought cycle did not influence the hydraulic performance during the second drought, and after re-irrigation S plants had 40% higher wood NSC content. Our data suggest that beech cannot recover from high embolism levels but multiple droughts might enhance stem NSC availability.


Assuntos
Metabolismo dos Carboidratos , Secas , Fagus/fisiologia , Transpiração Vegetal , Fagus/crescimento & desenvolvimento , Caules de Planta/fisiologia
15.
Tree Physiol ; 38(2): 198-211, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29177459

RESUMO

Decreasing water availability due to climate change poses the question of whether and to what extent tree species are able to hydraulically acclimate and how hydraulic traits of stems and leaves are coordinated under drought. In a through-fall exclusion experiment, hydraulic acclimation was analyzed in a mixed forest stand of Fagus sylvatica L. and Picea abies (L.) Karst. In drought-stressed (TE, through-fall exclusion over 2 years) and control (CO) trees, hydraulic vulnerability was studied in branches as well as in leaves (F. sylvatica) and end-twigs (P. abies, entirely formed during the drought period) sampled at the same height in sun-exposed portions of the tree crown. In addition, relevant xylem anatomical traits and leaf pressure-volume relations were analyzed. The TE trees reached pre-dawn water potentials down to -1.6 MPa. In both species, water potentials at 50% loss of xylem hydraulic conductivity were ~0.4 MPa more negative in TE than in CO branches. Foliage hydraulic vulnerability (expressed as water potential at 50% loss of leaf/end-twig hydraulic conductance) and water potential at turgor loss point were also, respectively, 0.4 and 0.5 MPa lower in TE trees. Minor differences were observed in conduit mean hydraulic diameter and cell wall reinforcement. Our findings indicate significant and fast hydraulic acclimation under relatively mild drought in both tree species. Acclimation was well coordinated between branches and foliage, which might be essential for survival and productivity of mature trees under future drought periods.


Assuntos
Mudança Climática , Fagus/fisiologia , Picea/fisiologia , Xilema/fisiologia , Aclimatação , Alemanha , Folhas de Planta/fisiologia , Brotos de Planta/fisiologia
16.
Sci Rep ; 7(1): 14308, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085007

RESUMO

Hydraulic failure and carbon starvation are recognized as main causes of drought-induced forest decline. As water transport and carbon dynamics are strictly interdependent, it is necessary to clarify how dehydration-rehydration cycles are affecting the relations between stem embolism and non-structural carbohydrates (NSC). This is particularly needed for conifers whose embolism repair capability is still controversial. Potted Norway spruce saplings underwent two drought-re-irrigation cycles of same intensity, but performed in two consecutive summers. During the second cycle, stem percent loss of hydraulic conductivity (PLC) and NSC content showed no carry-over effects from the previous drought, indicating complete long-term recovery. The second drought treatment induced moderate PLC (20%) and did not affect total NSCs content, while starch was converted to soluble sugars in the bark. After one week of re-irrigation, PLC recovered to pre-stress values (0%) and NSCs were depleted, only in the wood, by about 30%. Our data suggest that spruce can repair xylem embolism and that, when water is newly available, NSCs stored in xylem parenchyma can be mobilized over short term to sustain respiration and/or for processes involved in xylem transport restoration. This, however, might imply dependency on sapwood NSC reserves for survival, especially if frequent drought spells occur.

17.
Tree Physiol ; 37(7): 950-960, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541559

RESUMO

Hydraulic redistribution (HR) of soil water through plant roots is a crucial phenomenon improving the water balance of plants and ecosystems. It is mostly described under severe drought, and not yet studied under moderate drought. We tested the potential of HR under moderate drought, hypothesizing that (H1) tree species redistribute soil water in their roots even under moderate drought and that (H2) neighboring plants are supported with water provided by redistributing plants. Trees were planted in split-root systems with one individual (i.e., split-root plant, SRP) having its roots divided between two pots with one additional tree each. Species were 2- to  4-year-old English oak (Quercus robur L.), European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). A gradient in soil water potential (ψsoil) was established between the two pots (-0.55 ± 0.02 MPa and -0.29 ± 0.03 MPa), and HR was observed by labeling with deuterium-enriched water. Irrespective of species identity, 93% of the SRPs redistributed deuterium enriched water from the moist to the drier side, supporting H1. Eighty-eight percent of the plants in the drier pots were deuterium enriched in their roots, with 61 ± 6% of the root water originating from SRP roots. Differences in HR among species were related to their root anatomy with diffuse-porous xylem structure in both beech and-opposing the stem structure-oak roots. In spruce, we found exclusively tracheids. We conclude that water can be redistributed within roots of different tree species along a moderate ψsoil gradient, accentuating HR as an important water source for drought-stressed plants, with potential implications for ecohydrological and plant physiological sciences. It remains to be shown to what extent HR occurs under field conditions in Central Europe.


Assuntos
Secas , Fagus/fisiologia , Picea/fisiologia , Quercus/fisiologia , Água/fisiologia , Deutério , Europa (Continente) , Marcação por Isótopo , Raízes de Plantas/fisiologia , Árvores/fisiologia
18.
Funct Plant Biol ; 42(3): 264-273, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32480672

RESUMO

Spartina patens (Ait.) Muhl. is a grass native to the Atlantic coastal area of North America currently invading salt marsh ecosystems in several regions of Europe. We investigated leaf water relations and hydraulics, gas exchange, nitrogen and starch content in two populations of S. patens growing under contrasting salinity levels in a salt marsh and in a dune system in order to assess its functional plasticity as a factor contributing to its invasive potential. The analysis of leaf water relations revealed a suite of mechanisms adopted by S. patens to overcome salt and drought stress while maintaining relatively invariant leaf morphological traits and plant biomass. In particular, salt marsh plants experiencing severe water stress underwent greater osmoregulation and leaf hydraulic adjustment than dune plants. We also present the first experimental evidence for salt-mediated regulation of xylem hydraulic efficiency in a halophytic grass and suggest that it is an important functional trait allowing plants growing in saline habitats to cope with a restricted water supply. The functional plasticity of leaf water relations and xylem hydraulics emerges as a key trait underlying the competitive ability and invasive potential of S. patens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA