Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(1): 16, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38242999

RESUMO

This study investigates the performance of reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the colorimetric detection of SARS-CoV-2 using fluorometric dye, namely, calcein. The detection limit (LoD) with the N-ID1 primer set resulted in superior performance, corresponding to ~ 2 copies/reaction or ~ 0.1 copies/µL of the RNA sample. The color development can be observed by the naked eye, using an ultraviolet (UV) transilluminator or a hand-UV light without the requirement of expensive devices. The average time-to-reaction (TTR) value was 26.2 min in high-copy number samples, while it was about 50 min in rRT-PCR. A mobile application was proposed to quantify the positive and negative results based on the three-color spaces (RGB, Lab, and HSB). Compared to rRT-PCR (n = 67), this assay allows fast and sensitive visual detection of SARS-CoV-2, with high sensitivity (90.9%), selectivity (100%), and accuracy (94.03%). Besides, the assay was sensitive regardless of variants. Since this assay uses a fluorescent dye for visual observation, it can be easily adapted in RT-LAMP assays with high sensitivity. Thus, it can be utilized in low-source centers and field testing such as conferences, sports meetings, refugee camps, companies, and schools.


Assuntos
COVID-19 , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sensibilidade e Especificidade , Concentração de Íons de Hidrogênio , RNA Viral/genética
2.
Mikrochim Acta ; 191(6): 339, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789855

RESUMO

Loop-mediated isothermal amplification (LAMP) is a molecular diagnosis technology with the advantages of isothermal reaction conditions and high sensitivity. However, the LAMP reactions are prone to producing false-positive results and thus are usually less reliable. This study demonstrates a gold nanoparticle (AuNP)-assisted colorimetric LAMP technique for diagnosing SARS-CoV-2, which aims to overcome the false-positive results. The AuNPs were functionalized with E gene probes, specifically tailored to bind to the amplified E-gene LAMP product, using the freezing method. Varied salt concentration and AuNP/probe combinations were tested for the highest visual performance. The experiments were conducted on synthetic SARS-CoV-2 RNA (Omicron variant), as well as on clinical samples. The assay showed an exceptional sensitivity of 8.05 fg of LAMP amplicon mixture (0.537 fg/µL). The average reaction time was ~ 30 min. In conclusion, AuNP-assisted LAMP detection will not identify any potential unspecific amplification, which helps to improve the efficiency and reliability of LAMP assays in point-of-care applications. The freezing method to functionalize the AuNPs with probes simplifies the assay, which can be utilized in further diagnostic studies.


Assuntos
COVID-19 , Colorimetria , Ouro , Nanopartículas Metálicas , Técnicas de Amplificação de Ácido Nucleico , RNA Viral , SARS-CoV-2 , Ouro/química , Nanopartículas Metálicas/química , Colorimetria/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , SARS-CoV-2/genética , Humanos , COVID-19/diagnóstico , COVID-19/virologia , RNA Viral/genética , RNA Viral/análise , Congelamento , Técnicas de Diagnóstico Molecular/métodos , Limite de Detecção
3.
Funct Integr Genomics ; 22(6): 1391-1401, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36089609

RESUMO

The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused millions of infections and deaths worldwide since it infected humans almost 3 years ago. Improvements of current assays and the development of new rapid tests or to diagnose SARS-CoV-2 are urgent. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a rapid and propitious assay, allowing to detect both colorimetric and/or fluorometric nucleic acid amplifications. This study describes the analytical and clinical evaluation of RT-LAMP assay for detection of SARS-CoV-2, by designing LAMP primers targeting N (nucleocapsid phosphoprotein), RdRp (polyprotein), S (surface glycoprotein), and E (envelope protein) genes. The assay's performance was compared with the gold standard RT-PCR, yielding 94.6% sensitivity and 92.9% specificity. Among the tested primer sets, the ones for S and N genes had the highest analytical sensitivity, showing results in about 20 min. The colorimetric and fluorometric comparisons revealed that the latter is faster than the former. The limit of detection (LoD) of RT-LAMP reaction in both assays is 50 copies/µl of the reaction mixture. However, the simple eye-observation advantage of the colorimetric assay (with a color change from yellow to red) serves a promising on-site point-of-care testing method anywhere, including, for instance, laboratory and in-house applications.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Transcrição Reversa , Colorimetria/métodos , COVID-19/diagnóstico , COVID-19/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética
4.
Genomics ; 113(4): 2455-2467, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34052318

RESUMO

Clavibacter michiganensis subsp. michiganensis (Cmm) is a gram-positive bacterium causing destructive bacterial wilt and canker disease in tomato. Herein, a comparative transcriptome analysis was performed on Cmm-resistant and -susceptible tomato lines. Tomato seedlings were inoculated with Cmm and harvested for transcriptome analysis after 4 and 8 day time-points. Twenty-four transcriptome libraries were profiled by RNA sequencing approach. Total of 545 million clean reads was generated. 1642 and 2715 differentially expressed genes (DEG) were identified in susceptible lines within 4 and 8 days after inoculation (DAI), respectively. In resistant lines, 1731 and 1281 DEGs were found following 4 and 8 DAI, respectively. Gene Ontology analysis resulted in a higher number of genes involved in biological processes and molecular functions in susceptible lines. On the other hand, such biological processes, "defense response", and "response to stress" were distinctly indicated in resistant lines which were not found in susceptible ones upon inoculation, according to the gene set enrichment analyses. Upon Cmm-inoculation, several defense responsive genes were found to be differentially expressed. Of which 26 genes were in the resistant line and three were in the susceptible line. This study helps to understand the transcriptome response of Cmm-resistant and -susceptible tomato lines. The results provide comprehensive data for molecular breeding studies, for the purpose to control of the pathogen in tomato.


Assuntos
Solanum lycopersicum , Clavibacter , Perfilação da Expressão Gênica , Solanum lycopersicum/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma
5.
Medicina (Kaunas) ; 58(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36422214

RESUMO

Improper use of antimicrobials has resulted in the emergence of antimicrobial resistance (AMR), including multi-drug resistance (MDR) among bacteria. Recently, a sudden increase in Carbapenem-resistant Enterobacterales (CRE) has been observed. This presents a substantial challenge in the treatment of CRE-infected individuals. Bacterial plasmids include the genes for carbapenem resistance, which can also spread to other bacteria to make them resistant. The incidence of CRE is rising significantly despite the efforts of health authorities, clinicians, and scientists. Many genotypic and phenotypic techniques are available to identify CRE. However, effective identification requires the integration of two or more methods. Whole genome sequencing (WGS), an advanced molecular approach, helps identify new strains of CRE and screening of the patient population; however, WGS is challenging to apply in clinical settings due to the complexity and high expense involved with this technique. The current review highlights the molecular mechanism of development of Carbapenem resistance, the epidemiology of CRE infections, spread of CRE, treatment options, and the phenotypic/genotypic characterisation of CRE. The potential of microorganisms to acquire resistance against Carbapenems remains high, which can lead to even more susceptible drugs such as colistin and polymyxins. Hence, the current study recommends running the antibiotic stewardship programs at an institutional level to control the use of antibiotics and to reduce the spread of CRE worldwide.


Assuntos
Gestão de Antimicrobianos , Carbapenêmicos , Humanos , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Genótipo , Colistina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
6.
Genomics ; 112(1): 782-795, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31128265

RESUMO

MYB transcription factors (TFs) have vital roles in regulating lignin or fiber development. Flax (Linum usitatissimum) is known as one of the plants with high fiber production capacity. However, no studies have been conducted to identify and characterize MYB TFs in the flax genome. Results showed that flax genome harbours 167 R2R3, seven 3R, and one 4R-type MYB TFs. 22 MYB genes (%13) were estimated to be tandem duplicated dated around 13.3-86.98 Mya. 130 flax MYB members have apparent orthologous with Arabidopsis, in which 17 R2R3 MYBs are associated with lignin biosynthesis. MYB062, MYB072, MYB096, MYB141, and MYB146 genes were up-regulated in tissues having higher lignin production capacity. In opposite, MYB012 and MYB113 genes were down-regulated which points out the involvement of those genes in the lignin biosynthesis mechanism. This comprehensive study can provide a basis for understanding the role of MYBs in fiber or lignin production in flax.


Assuntos
Linho/genética , Lignina/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Linho/anatomia & histologia , Linho/metabolismo , Duplicação Gênica , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Caules de Planta/anatomia & histologia , Domínios Proteicos , Fatores de Transcrição/química , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
7.
Genomics ; 112(2): 1947-1955, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31730798

RESUMO

Long non-coding RNA (lncRNA) has a misleading name, since although they do not encode proteins, they may encode small peptides. Such transcripts are emerging as regulatory molecules. With the advent of next-generation sequencing technologies and novel bioinformatics tools, a tremendous amount of lncRNAs have been identified in several plant species. Recent reports demonstrated roles of plant lncRNAs such as development and environmental response. Here, we reported a genome-wide discovery of ~8000 barley lncRNAs and measured their expression pattern upon excessive boron (B) treatment. According to the tissue-based comparison, leaves have a greater number of B-responsive differentially expressed lncRNAs than the root. Functional annotation of the coding transcripts, which were co-expressed with lncRNAs, revealed that molecular function of the ion transport, establishment of localization, and response to stimulus significantly enriched only in the leaf. On the other hand, 32 barley endogenous target mimics (eTM) as lncRNAs, which potentially decoy the transcriptional suppression activity of 18 miRNAs, were obtained. Also, six lncRNAs, differentially expressed upon B-treatment, were selected and quantitatively analyzed in both B-sensitive and B-tolerant cultivars treated by excess B-level. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis confirmed the B-responsive expressional changes obtained by RNA sequencing. Notably, some lncRNAs (i.e., TCONS_00045190 and TCONS_00056415) over-expressed only in B-tolerant cultivar upon excess B treatment. Presented data including identification, expression measurement, and functional characterization of barley lncRNAs suggest that B-stress response might also be regulated by lncRNA expression, via cooperative interaction of miRNA-eTM-coding target transcript modules.


Assuntos
Boro/farmacologia , Hordeum/genética , RNA Longo não Codificante/genética , Estresse Fisiológico , Oligoelementos/farmacologia , Hordeum/efeitos dos fármacos , Hordeum/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Transcriptoma
8.
Proc Natl Acad Sci U S A ; 114(44): E9413-E9422, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078332

RESUMO

Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.


Assuntos
Vias Biossintéticas/genética , Genoma de Planta/genética , Óleos/metabolismo , Olea/genética , Evolução Biológica , Ácidos Graxos Dessaturases/genética , Expressão Gênica/genética , Ácidos Linoleicos/genética , Olea/metabolismo , Ácido Oleico/genética , RNA Interferente Pequeno/genética
9.
Ecotoxicol Environ Saf ; 194: 110377, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32145527

RESUMO

Nanomaterials (NMs) have emerged in the last decades and are used in many disciplines such as industry, material sciences, biomedicine, biotechnology, bioenergy, and agriculture. The size of the NMs is a critical factor that affects NMs' integration and transfer into the biological systems. Therefore, this study aims at investigating the effect of NMs-size on i) plant growth and physiology, and ii) NMs uptake and translocation in plant tissues. For these purposes, iron (III) oxide (Fe2O3) NMs with varied sizes, 8-10, 20-40, and 30-50 nm, have been applied to wheat plants in a hydroponic system. Results showed that Fe2O3 NMs enhanced root length, plant height, biomass, and chlorophyll content of wheat. Confocal microscopy analysis indicated that Fe2O3 NMs cause injury in root-tip cells without a visible toxic symptom. Vibrating sample magnetometer (VSM), and inductively coupled plasma-mass spectroscopy (ICP-MS) analyses of leaf tissues revealed that all tested NMs were up taken by wheat plant and translocated to the leaves. Iron content was found to be dramatically increased in NMs-treated plant tissues, which possibly contributed to the growth enhancement. Experiments confirmed that Fe2O3 NMs with 20-40 nm size is much more efficient in plant growth compared to those with 8-10 and 30-50 nm size. Overall, Fe2O3 NMs with 20-40 nm in size could be proposed as a nano-fertilizer for agricultural applications. On the other hand, the translocation of NMs in the wheat plant requires further investigation of their effects on the end users.


Assuntos
Fertilizantes , Nanopartículas/toxicidade , Desenvolvimento Vegetal/efeitos dos fármacos , Triticum/efeitos dos fármacos , Transporte Biológico , Biomassa , Clorofila/metabolismo , Compostos Férricos/química , Compostos Férricos/farmacologia , Hidroponia , Nanopartículas/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
10.
Ecotoxicol Environ Saf ; 186: 109751, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31600650

RESUMO

In this study, calcium and magnesium substituted strontium nano-hexaferrites (Sr0.96Mg0.02Ca0.02Fe12O19, SrMgCa nano-HF) were synthesized by the sol-gel auto-combustion method and their impact on the nutrient uptake, magnetic character and physiology of barley (Hordeum vulgare L.), a crop plant, was investigated. Structural, microstructural, and magnetic properties of nano-HF were evaluated by using vibrating sample magnetometry (VSM), X-ray diffraction (XRD), scanning electron microscopy (SEM) along with energy-dispersive X-ray (EDX) and elemental mapping techniques. Plants were hydroponically exposed to nano-HF (ranging from 125 to 1000 mg/L) for three weeks. Results showed that the SrMgCa nano-HF application enhanced germination rate (about 20%), tissue growth (about 38%), biomass (about 20%), soluble protein content (about 41%), and chlorophyll pigments (about 33-42%) when compared to the untreated control. In general, the plants showed the highest growth achievement at 125 or 250 mg/L of nano-HF treatment. However, higher doses diminished the growth parameters. Element concentrations and magnetic behavior analyses of plant parts proved that SrMgCa nano-HF with a size of 42.4 nm are up-taken by the plant roots and lead to increase in iron, calcium, magnesium, and strontium contents of leaves, which were about 20, 18, 3, and 60 times higher in 500 mg/L nano-HF-treated leaves than those of control, respectively. Overall, this study shows for the first time that the four elements have been internalized into the plant body through the application of substituted nano-HF. These findings suggest that mineral-substituted nanoparticles can be incorporated into plant breeding programs for the i) enhancement of seed germination and ii) treatment of plants by fighting with mineral deficiencies.


Assuntos
Cálcio/farmacologia , Compostos Férricos/farmacologia , Hordeum/efeitos dos fármacos , Magnésio/farmacologia , Fenômenos Magnéticos , Nanopartículas , Estrôncio/farmacologia , Transporte Biológico , Biomassa , Cálcio/metabolismo , Clorofila/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Compostos Férricos/metabolismo , Germinação/efeitos dos fármacos , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Hidroponia , Ferro/metabolismo , Ferro/farmacologia , Magnésio/metabolismo , Minerais/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Estrôncio/metabolismo
11.
Mol Biol Rep ; 45(3): 211-225, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29399733

RESUMO

Developmental processes and stress-induction activate many key proteins in plants such as metacaspase which regulate programmed cell death (PCD). In this study, identification of barley metacaspases and their possible roles upon boron (B)-induction was investigated by using in silico and wet-lab methods. Genome-wide analysis revealed that barley genome harbor ten metacaspases which divided into three groups: Type-I, -I* and -II. Segmental and tandem duplication contributed their expansion. Metacaspase-specific catalytic residues (His and Cys) were found to be altered in HvMC1, 2, and 4, in which His exchanged to Meth or Ala, critical for their activity and substrate selectivity. Cis-acting elements were found to be associated with three main processes: stress response, growth/development, and light response. Digital expression analysis from eight tissues revealed tissue specific metacaspase expressions. In addition, RT-qPCR analysis conducted in appropriate (50 µM) and excess-B (1 and-3 mM) conditions in different time points (3 and 10 days). Toxic level of B caused growth inhibition and chlorosis which appeared at the leaf tips. Also, PCD initiation was detected after 3 days of excess-B exposure. Digital expression and qPCR analysis agreed with each other that HvMC4 expression was significantly increased upon excess-B supplementation. In opposite, HvMC5 was down-regulated in the leaf zones which was another critical B-responsive gene in barley. Hence, HvMC4 and HvMC5 seem to have antagonistic effect during PCD regulation. These results can provide insights for metacaspase functionality in barley, not only limited for B-induction but also various kinds of PCD-causing conditions.


Assuntos
Boro/toxicidade , Caspases/genética , Caspases/metabolismo , Hordeum/efeitos dos fármacos , Hordeum/enzimologia , Apoptose/genética , Bases de Dados Genéticas , Estudo de Associação Genômica Ampla , Hordeum/genética , Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Toxicol Ind Health ; 31(8): 712-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23546396

RESUMO

This study was carried out to investigate the genotoxic effect of boron (B) on maize using randomly amplified polymorphic DNA (RAPD) method. Experimental design was conducted under 0, 5, 10, 25, 50, 100, 125, and 150 ppm B exposures, and physiological changes have revealed a sharp decrease in root growth rates from 28% to 85%, starting from 25 ppm to 150 ppm, respectively. RAPD-polymerase chain reaction (PCR) analysis shows that DNA alterations are clearly observed from beginning to 100 ppm. B-induced inhibition in root growth had a positive correlation with DNA alterations. Total soluble protein, root and stem lengths, and B content analysis in root and leaves encourage these results as a consequence. These preliminary findings reveal that B causes chromosomal aberration and genotoxic effects on maize. Meanwhile, usage of RAPD-PCR technique is a suitable biomarker to detect genotoxic effect of B on maize and other crops for the future.


Assuntos
Boro/farmacologia , Dano ao DNA/efeitos dos fármacos , Mutagênicos/farmacologia , Estruturas Vegetais/efeitos dos fármacos , Zea mays , Boro/administração & dosagem , Relação Dose-Resposta a Droga , Reação em Cadeia da Polimerase , Técnica de Amplificação ao Acaso de DNA Polimórfico
13.
Arch Gerontol Geriatr ; 125: 105517, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38851091

RESUMO

This investigation explores the combined influence of SCD Probiotics and tauroursodeoxycholic acid (TUDCA) on liver health in elderly male Sprague-Dawley rats. Through the administration of intravenous TUDCA (300 mg/kg) and oral SCD Probiotics (3 mL at 1 × 10^8 CFU) daily for one week, this study evaluates the biomolecular composition, histopathological alterations, and inflammasome activity in the liver. Analytical methods encompassed ATR-FTIR spectroscopy integrated with machine learning for the assessment of biomolecular structures, RT-qPCR for quantifying inflammasome markers (NLRP3, ASC, Caspase-1, IL18, IL1ß), and histological examinations to assess liver pathology. The findings reveal that TUDCA prominently enhanced lipid metabolism by reducing cholesterol esters, while SCD Probiotics modulated both lipid and protein profiles, notably affecting fatty acid chain lengths and protein configurations. Histological analysis showed significant reductions in cellular degeneration, lymphatic infiltration, and hepatic fibrosis. Furthermore, the study noted a decrease in the immunoreactivity for NLRP3 and ASC, suggesting suppressed inflammasome activity. While SCD Probiotics reduced the expression of certain inflammasome-related genes, they also paradoxically increased AST and LDH levels. Conversely, an exclusive elevation in albumin levels was observed in the group treated with SCD Probiotics, implying a protective role against liver damage. These results underscore the therapeutic potential of TUDCA and SCD Probiotics for managing age-associated liver disorders, illustrating their individual and synergistic effects on liver health and pathology. This study provides insights into the complex interactions of these agents, advocating for customized therapeutic approaches to combat liver fibrosis, enhance liver functionality, and decrease inflammation in aging populations.

14.
Plant Physiol Biochem ; 210: 108616, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615444

RESUMO

This study aims to examine the effect of foliar magnetic iron oxide (Fe3O4) nanoparticles (IONP) application on the physiology, photosynthetic parameters, magnetic character, and mineral element distribution of cherry tomatoes (Solanum lycopersicum var. cerasiforme). The IONP suspension (500 mg L-1) was sprayed once (S1), twice (S2), thrice (S3), and four times (S4) a week on seedlings. Upon 21 days of the treatments, photosynthetic parameters (chlorophyll, carotenoids, photosynthetic yield, electron transport rate) were elucidated. Inductively-coupled plasma-optical emission spectrometer (ICP-OES) and vibrating sample magnetometer (VSM) were used to determine the mineral elements and abundance of magnetic power in the seedlings. In addition, the RT-qPCR method was performed to quantify the expressions of photosystem-related (PsaC, PsbP6, and PsbQ) and ferritin-coding (Fer-1 and Fer-2) genes. Results revealed that the physiological and photosynthetic indices were improved upon S1 treatment. The optimal dosage of IONP spraying enhances chlorophyll, carotenoid, electron transport rate (ETR), and effective photochemical quantum yield of photosystem II (Y(II)) but substantially diminishes non-photochemical quenching (NPQ). However, frequent IONP applications (S2, S3, and S4) caused growth retardation and suppressed the photosynthetic parameters, suggesting a toxic effect of IONP in recurrent treatments. Fer-1 and Fer-2 expressions were strikingly increased by IONP applications, suggesting an attempt to neutralize the excess amount of Fe ions by ferritin. Nevertheless, frequent IONP treatment fluctuated the mineral distribution and caused growth inhibition. Although low-repeat foliar applications of IONP (S1 in this study) may help improve plant growth, consecutive applications (S2, S3, and S4) should be avoided.


Assuntos
Fotossíntese , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro , Clorofila/metabolismo , Minerais/metabolismo , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Compostos Férricos
15.
Environ Sci Pollut Res Int ; 31(14): 22171-22186, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38403831

RESUMO

Root-to-shoot translocation of nanoparticles (NPs) is a matter of interest due to their possible unprecedented effects on biota. Properties of NPs, such as structure, surface charge or coating, and size, determine their uptake by cells. This study investigates the size effect of iron oxide (Fe3O4) NPs on plant uptake, translocation, and physiology. For this purpose, Fe3O4 NPs having about 10 and 100 nm in average sizes (namely NP10 and NP100) were hydroponically subjected to barley (Hordeum vulgare L.) in different doses (50, 100, and 200 mg/L) at germination (5 days) and seedling (3 weeks) stages. Results revealed that particle size does not significantly influence the seedlings' growth but improves germination. The iron content in root and leaf tissues gradually increased with increasing NP10 and NP100 concentrations, revealing their root-to-shoot translocation. This result was confirmed by vibrating sample magnetometry analysis, where the magnetic signals increased with increasing NP doses. The translocation of NPs enhanced chlorophyll and carotenoid contents, suggesting their contribution to plant pigmentation. On the other hand, catalase activity and H2O2 production were higher in NP10-treated roots compared to NP100-treated ones. Besides, confocal microscopy revealed that NP10 leads to cell membrane damages. These findings showed that Fe3O4 NPs were efficiently taken up by the roots and transported to the leaves regardless of the size factor. However, small-sized Fe3O4 NPs may be more reactive due to their size properties and may cause cell stress and membrane damage. This study may help us better understand the size effect of NPs in nanoparticle-plant interaction.


Assuntos
Hordeum , Hordeum/metabolismo , Tamanho da Partícula , Bioacumulação , Peróxido de Hidrogênio/metabolismo , Plântula , Nanopartículas Magnéticas de Óxido de Ferro
16.
Mol Genet Genomics ; 288(3-4): 141-55, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23539153

RESUMO

MYB family of transcription factors (TF) comprises one of the largest transcription factors in plants and is represented in all eukaryotes. They include highly conserved MYB repeats (1R, R2R3, 3R, and 4R) in the N-terminus. In addition to this, they have diverse C-terminal sequences which help the protein gain wide distinct functions, such as controlling development, secondary metabolism, hormonal regulation and response to biotic and abiotic stress. Stress-responsive roles of the MYB TFs were reported for drought, salt, wounding, cold, freezing, dehydration and osmotic stresses. This study describes the identification of barley R2R3-MYB TFs including their expression analysis in tissues under control and Boron (B) toxic conditions. Conserved motifs for MYB proteins were searched into barley full-transcriptome RNA-seq data and a total of 320 protein sequences were filtered as MYB TFs in which 51 of them corresponded to R2R3 MYB TFs. Using various bioinformatics tools, their conserved domain structures, chromosomal distributions, gene duplications, comparative functional analysis, as well as phylogenetic relations with Arabidopsis thaliana, were conducted. Beside the RNA-seq data-based expression pattern analysis of 51 R2R3 MYB TFs, quantitative analysis of selected R2R3 MYB TF genes was assessed in control and B-stressed root and leaf tissues. Critical B-induced R2R3 MYB TFs were identified. It was concluded that the results would be useful for functional characterizations of R2R3-type MYB transcription factors that are possibly involved in both B stress and divergent regulation mechanisms in plants.


Assuntos
Boro/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hordeum/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma , Sequência de Aminoácidos , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Relação Dose-Resposta a Droga , Genoma de Planta/genética , Dados de Sequência Molecular , Família Multigênica , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/classificação , Raízes de Plantas/genética , Sequências Repetitivas de Aminoácidos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/classificação
17.
Sci Rep ; 13(1): 5066, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977756

RESUMO

The reverse-transcription loop-mediated isothermal amplification (RT-LAMP) is a cheaper and faster testing alternative for detecting SARS-CoV-2. However, a high false-positive rate due to misamplification is one of the major limitations. To overcome misamplifications, we developed colorimetric and fluorometric RT-LAMP assays using five LAMP primers, instead of six. The gold-standard RT-PCR technique verified the assays' performance. Compared to other primer sets with six primers (N, S, and RdRp), the E-ID1 primer set, including five primers, performed superbly on both colorimetric and fluorometric assays. The sensitivity of colorimetric and fluorometric assays was 89.5% and 92.2%, respectively, with a limit of detection of 20 copies/µL. The colorimetric RT-LAMP had a specificity of 97.2% and an accuracy of 94.5%, while the fluorometric RT-LAMP obtained 99% and 96.7%, respectively. No misamplification was evident even after 120 min, which is crucial for the success of this technique. These findings are important to support the use of RT-LAMP in the healthcare systems in fighting COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Teste para COVID-19 , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , RNA Viral
18.
3 Biotech ; 13(2): 40, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36636577

RESUMO

Toluene is one of the hydrocarbons that contaminate soil and groundwater, and has a high cost to remediate, which makes it an environmental pollutant of concern. This study aimed to find bacterial distribution from nonwoven geotextile (GT) fabric specimens in a pilot-scale permeable reactive barrier (PRB). Upon 167 days of incubation with the addition of toluene, the microbial community on the GT surfaces (n = 12) was investigated by the 16S rRNA metagenome sequencing approach. According to taxonomic classification, the Proteobacteria phylum dominated the metagenomes of all the geotextile samples (80-90%). Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database search of the toluene degradation mechanism revealed the susceptible toluene-degrading species. For the toluene-to-benzoate degradation, the Cupriavidus genus, particularly C. gilardii, C. metallidurans, and C. taiwanensis, are likely to be functional. In addition to these species, the Novosphingobium genus was abundantly localized in the GTs, in particular Novosphingobium sp. ABRDHK2. The results suggested the biodegradation potential of these species in toluene remediation. Overall, this work sheds light on the variety of microorganisms found in the geotextile fabrics used in PRBs and the species involved in the biodegradation of toluene from several sources, including soil, sediment, and groundwater. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03460-y.

19.
J Infect Public Health ; 16(4): 531-541, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36801633

RESUMO

Monkeypox virus (MPXV) is a double-stranded DNA virus belonging to the Poxviridae family of the genus Orthopoxvirus with two different clades known as West African and Congo Basin. Monkeypox (MPX) is a zoonosis that arises from the MPXV and causes a smallpox-like disease. The endemic disease status of MPX was updated to an outbreak worldwide in 2022. Thus, the condition was declared a global health emergency independent of travel issues, accounting for the primary reason for its prevalence outside Africa. In addition to identified transmission mediators through animal-to-human and human-to-human, especially sexual transmission among men who have sex with men came to prominence in the 2022 global outbreak. Although the severity and prevalence of the disease differ depending on age and gender, some symptoms are commonly observed. Clinical signs such as fever, muscle and headache pain, swollen lymph nodes, and skin rashes in defined body regions are standard and an indicator for the first step of diagnosis. By following the clinical signs, laboratory diagnostic tests like conventional polymerase chain reaction (PCR) or real-time PCR (RT-PCR) are the most common and accurate diagnostic methods. Antiviral drugs such as tecovirimat, cidofovir, and brincidofovir are used for symptomatic treatment. There is no MPXV-specific vaccine; however, currently available vaccines against smallpox enhance the immunization rate. This comprehensive review covers the MPX disease history and the current state of knowledge by assessing broad topics and views related to disease origin, transmission, epidemiology, severity, genome organization and evolution, diagnosis, treatment, and prevention.


Assuntos
Mpox , Minorias Sexuais e de Gênero , Varíola , Masculino , Animais , Humanos , Monkeypox virus/genética , Mpox/diagnóstico , Mpox/tratamento farmacológico , Mpox/epidemiologia , Antivirais/uso terapêutico , Homossexualidade Masculina
20.
3 Biotech ; 13(9): 296, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37564274

RESUMO

The effect and contribution of an external magnetic field (MF) on the uptake and translocation of nanoparticles (NPs) in plants have been investigated in this study. Barley was treated with iron oxide NPs (Fe3O4, 500 mg/L, 50-100 nm) and grown under various MF strengths (20, 42, 125, and 250 mT). The root-to-shoot translocation of NPs was assessed using a vibrating sample magnetometer (VSM) and inductively coupled plasma optical emission spectrometry (ICP-OES). Additionally, plant phenological parameters, such as germination, protein and chlorophyll content, and photosynthetic and nutritional status, were examined. The results demonstrated that the external MF significantly enhances the uptake of NPs through the roots. The uptake was higher at lower MF strengths (20 and 42 mT) than at higher MF strengths (125 and 250 mT). The root and shoot iron (Fe) contents were approximately 2.5-3-fold higher in the 250 mT application compared to the control. Furthermore, the MF treatments significantly increased micro-elements such as Mn, Zn, Cu, Mo, and B (P < 0.005). This effect could be attributed to the disruption of cell membranes at the root tip cells caused by both the MF and NPs. Moreover, the MF treatments improved germination rates by 28%, total protein content, and photosynthetic parameters. These findings show that magnetic field application helps the effective transport of magnetic NPs, which could be essential for NPs-mediated drug delivery, plant nutrition, and genetic transformation applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03727-4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA