Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cardiovasc Diabetol ; 22(1): 101, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120524

RESUMO

Sodium-glucose co-transporter-2 inhibitors are used in the treatment of diabetes but are also emerging as cardioprotective agents in heart diseases even in the absence of type 2 diabetes. In this paper, upon providing a short overview of common pathophysiological features of diabetes, we review the clinically reported cardio- and nephroprotective potential of sodium-glucose co-transporter-2 inhibitors currently available on the market, including Dapagliflozin, Canagliflozin, and Empagliflozin. To that end, we summarize findings of clinical trials that have initially drawn attention to the drugs' organ-protective potential, before providing an overview of their proposed mechanism of action. Since we particularly expect that their antioxidative properties will broaden the application of gliflozins from therapeutic to preventive care, special emphasis was put on this aspect.


Assuntos
Cardiotônicos , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Compostos Benzidrílicos/uso terapêutico , Canagliflozina/uso terapêutico , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Oxirredução , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Cardiotônicos/uso terapêutico
2.
Mol Cell Proteomics ; 20: 100095, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33992777

RESUMO

Cancer cells undergo complex metabolic adaptations to survive and thrive in challenging environments. This is particularly prominent for solid tumors, where cells in the core of the tumor are under severe hypoxia and nutrient deprivation. However, such conditions are often not recapitulated in the typical 2D in vitro cancer models, where oxygen as well as nutrient exposure is quite uniform. The aim of this study was to investigate the role of a key neutral lipid hydrolase, namely adipose triglyceride lipase (ATGL), in cancer cells that are exposed to more tumor-like conditions. To that end, we cultured lung cancer cells lacking ATGL as multicellular spheroids in 3D and subjected them to comprehensive proteomics analysis and metabolic phenotyping. Proteomics data are available via ProteomeXchange with identifier PXD021105. As a result, we report that loss of ATGL enhanced growth of spheroids and facilitated their adaptation to hypoxia, by increasing the influx of glucose and endorsing a pro-Warburg effect. This was followed by changes in lipid metabolism and an increase in protein production. Interestingly, the observed phenotype was also recapitulated in an even more "in vivo like" setup, when cancer spheroids were grown on chick chorioallantoic membrane, but not when cells were cultured as a 2D monolayer. In addition, we demonstrate that according to the publicly available cancer databases, an inverse relation between ATGL expression and higher glucose dependence can be observed. In conclusion, we provide indications that ATGL is involved in regulation of glucose metabolism of cancer cells when grown in 3D (mimicking solid tumors) and as such could be an important factor of the treatment outcome for some cancer types. Finally, we also ratify the need for alternative cell culture models, as the majority of phenotypes observed in 3D and spheroids grown on chick chorioallantoic membrane were not observed in 2D cell culture.


Assuntos
Aciltransferases/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Aciltransferases/genética , Animais , Embrião de Galinha , Membrana Corioalantoide , Glucose/metabolismo , Humanos , Esferoides Celulares , Células Tumorais Cultivadas
3.
Clin Proteomics ; 19(1): 46, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36526981

RESUMO

The outbreak of a novel coronavirus (SARS-CoV-2) in 2019 led to a worldwide pandemic, which remains an integral part of our lives to this day. Coronavirus disease (COVID-19) is a flu like condition, often accompanied by high fever and respiratory distress. In some cases, conjointly with other co-morbidities, COVID-19 can become severe, leading to lung arrest and even death. Although well-known from a clinical standpoint, the mechanistic understanding of lethal COVID-19 is still rudimentary. Studying the pathology and changes on a molecular level associated with the resulting COVID-19 disease is impeded by the highly infectious nature of the virus and the concomitant sampling challenges. We were able to procure COVID-19 post-mortem lung tissue specimens by our collaboration with the BSL-3 laboratory of the Biobanking and BioMolecular resources Research Infrastructure Austria which we subjected to state-of-the-art quantitative proteomic analysis to better understand the pulmonary manifestations of lethal COVID-19. Lung tissue samples from age-matched non-COVID-19 patients who died within the same period were used as controls. Samples were subjected to parallel accumulation-serial fragmentation combined with data-independent acquisition (diaPASEF) on a timsTOF Pro and obtained raw data was processed using DIA-NN software. Here we report that terminal COVID-19 patients display an increase in inflammation, acute immune response and blood clot formation (with concomitant triggering of fibrinolysis). Furthermore, we describe that COVID-19 diseased lungs undergo severe extracellular matrix restructuring, which was corroborated on the histopathological level. However, although undergoing an injury, diseased lungs seem to have impaired proliferative and tissue repair signalling, with several key kinase-mediated signalling pathways being less active. This might provide a mechanistic link to post-acute sequelae of COVID-19 (PASC; "Long COVID"). Overall, we emphasize the importance of histopathological patient stratification when interpreting molecular COVID-19 data.

4.
Int J Mol Sci ; 23(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35328776

RESUMO

Non-alcoholic fatty liver disease is a pathology with a hard-to-detect onset and is estimated to be present in a quarter of the adult human population. To improve our understanding of the development of non-alcoholic fatty liver disease, we treated a human hepatoma cell line model, HepG2, with increasing concentrations of common fatty acids, namely myristic, palmitic and oleic acid. To reproduce more physiologically representative conditions, we also included combinations of these fatty acids and monitored the cellular response with an in-depth proteomics approach and imaging techniques. The two saturated fatty acids initially presented a similar phenotype of a dose-dependent decrease in growth rates and impaired lipid droplet formation. Detailed analysis revealed that the drop in the growth rates was due to delayed cell-cycle progression following myristic acid treatment, whereas palmitic acid led to cellular apoptosis. In contrast, oleic acid, as well as saturated fatty acid mixtures with oleic acid, led to a dose-dependent increase in lipid droplet volume without adverse impacts on cell growth. Comparing the effects of harmful single-fatty-acid treatments and the well-tolerated fatty acid mixes on the cellular proteome, we were able to differentiate between fatty-acid-specific cellular responses and likely common lipotoxic denominators.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Hepatócitos/metabolismo , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Proteoma/metabolismo
5.
Metab Eng ; 68: 68-85, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34537366

RESUMO

Cheap and renewable feedstocks such as the one-carbon substrate formate are emerging for sustainable production in a growing chemical industry. We investigated the acetogen Acetobacterium woodii as a potential host for bioproduction from formate alone and together with autotrophic and heterotrophic co-substrates by quantitatively analyzing physiology, transcriptome, and proteome in chemostat cultivations in combination with computational analyses. Continuous cultivations with a specific growth rate of 0.05 h-1 on formate showed high specific substrate uptake rates (47 mmol g-1 h-1). Co-utilization of formate with H2, CO, CO2 or fructose was achieved without catabolite repression and with acetate as the sole metabolic product. A transcriptomic comparison of all growth conditions revealed a distinct adaptation of A. woodii to growth on formate as 570 genes were changed in their transcript level. Transcriptome and proteome showed higher expression of the Wood-Ljungdahl pathway during growth on formate and gaseous substrates, underlining its function during utilization of one-carbon substrates. Flux balance analysis showed varying flux levels for the WLP (0.7-16.4 mmol g-1 h-1) and major differences in redox and energy metabolism. Growth on formate, H2/CO2, and formate + H2/CO2 resulted in low energy availability (0.20-0.22 ATP/acetate) which was increased during co-utilization with CO or fructose (0.31 ATP/acetate for formate + H2/CO/CO2, 0.75 ATP/acetate for formate + fructose). Unitrophic and mixotrophic conversion of all substrates was further characterized by high energetic efficiencies. In silico analysis of bioproduction of ethanol and lactate from formate and autotrophic and heterotrophic co-substrates showed promising energetic efficiencies (70-92%). Collectively, our findings reveal A. woodii as a promising host for flexible and simultaneous bioconversion of multiple substrates, underline the potential of substrate co-utilization to improve the energy availability of acetogens and encourage metabolic engineering of acetogenic bacteria for the efficient synthesis of bulk chemicals and fuels from sustainable one carbon substrates.


Assuntos
Acetobacterium , Acetatos , Acetobacterium/genética , Fermentação , Formiatos
6.
Allergy ; 76(6): 1743-1753, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33301602

RESUMO

BACKGROUND: In addition to known allergens, other proteins in pollen can aid the development of an immune response in allergic individuals. The contribution of the "unknown" protein allergens is apparent in phylogenetically related species where, despite of high homology of the lead allergens, the degree of allergenic potential can vary greatly. The aim of this study was to identify other potentially allergenic proteins in pollen of three common and highly related allergenic tree species: birch (Betula pendula), hazel (Corylus avellana) and alder (Alnus glutinosa). METHODS: For that purpose, we carried out a comprehensive, comparative proteomic screening of the pollen from the three species. In order to maximize protein recovery and coverage, different protein extraction and isolation strategies during sample preparation were employed. RESULTS: As a result, we report 2500-3000 identified proteins per each of the pollen species. Identified proteins were further used for a number of annotation steps, providing insight into differential distribution of peptidases, peptidase inhibitors and other potential allergenic proteins across the three species. Moreover, we carried out functional enrichment analyses that, interestingly, corroborated high species similarity in spite of their relatively distinct protein profiles. CONCLUSION: We provide to our knowledge first insight into proteomes of two very important allergenic pollen types, hazel and alder, where not even transcriptomics data are available, and compared them to birch. Datasets from this study can be readily used as protein databases and as such serve as basis for further functional studies.


Assuntos
Alnus , Corylus , Alérgenos , Betula , Humanos , Pólen , Proteômica , Árvores
7.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884585

RESUMO

Hepatic stellate cells (HSC) are the major cellular drivers of liver fibrosis. Upon liver inflammation caused by a broad range of insults including non-alcoholic fatty liver, HSC transform from a quiescent into a proliferating, fibrotic phenotype. Although much is known about the pathophysiology of this process, exact cellular processes which occur in HSC and enable this transformation remain yet to be elucidated. In order to investigate this HSC transformation, we employed a simple, yet reliable model of HSC activation via an increase in growth medium serum concentration (serum activation). For that purpose, immortalized human LX-2 HSC were exposed to either 1% or 10% fetal bovine serum (FBS). Resulting quiescent (1% FBS) and activated (10% FBS) LX-2 cells were then subjected to in-depth mass spectrometry-based proteomics analysis as well as comprehensive phenotyping. Protein network analysis of activated LX-2 cells revealed an increase in the production of ribosomal proteins and proteins related to cell cycle control and migration, resulting in higher proliferation and faster migration phenotypes. Interestingly, we also observed a decrease in the expression of cholesterol and fatty acid biosynthesis proteins in accordance with a concomitant loss of cytosolic lipid droplets during activation. Overall, this work provides an update on HSC activation characteristics using contemporary proteomic and bioinformatic analyses and presents an accessible model for HSC activation. Data are available via ProteomeXchange with identifier PXD029121.


Assuntos
Células Estreladas do Fígado/metabolismo , Proteoma/análise , Proteoma/metabolismo , Soroalbumina Bovina/farmacologia , Animais , Bovinos , Movimento Celular , Proliferação de Células , Células Estreladas do Fígado/efeitos dos fármacos , Humanos , Proteoma/efeitos dos fármacos
8.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670142

RESUMO

Oxidative stress contributes to detrimental functional decline of the myocardium, leading to the impairment of the antioxidative defense, dysregulation of redox signaling, and protein damage. In order to precisely dissect the changes of the myocardial redox state correlated with oxidative stress and heart failure, we subjected left-ventricular tissue specimens collected from control or failing human hearts to comprehensive mass spectrometry-based redox and quantitative proteomics, as well as glutathione status analyses. As a result, we report that failing hearts have lower glutathione to glutathione disulfide ratios and increased oxidation of a number of different proteins, including constituents of the contractile machinery as well as glycolytic enzymes. Furthermore, quantitative proteomics of failing hearts revealed a higher abundance of proteins responsible for extracellular matrix remodeling and reduced abundance of several ion transporters, corroborating contractile impairment. Similar effects were recapitulated by an in vitro cell culture model under a controlled oxygen atmosphere. Together, this study provides to our knowledge the most comprehensive report integrating analyses of protein abundance and global and peptide-level redox state in end-stage failing human hearts as well as oxygen-dependent redox and global proteome profiles of cultured human cardiomyocytes.


Assuntos
Perfilação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Espectrometria de Massas , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
J Nutr ; 150(10): 2707-2715, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32710763

RESUMO

BACKGROUND: In the settings of primary and secondary prevention for coronary artery disease (CAD), a crucial role is played by some key molecules involved in triglyceride (TG) metabolism, such as ApoCIII. Fatty acid (FA) intake is well recognized as a main determinant of plasma lipids, including plasma TG concentration. OBJECTIVES: The aim was to investigate the possible relations between the intakes of different FAs, estimated by their plasma concentrations, and circulating amounts of ApoCIII. METHODS: Plasma samples were obtained from 1370 subjects with or without angiographically demonstrated CAD (mean ± SD age: 60.6 ± 11.0 y; males: 75.8%; BMI: 25.9 ± 4.6 kg/m2; CAD: 73.3%). Plasma lipid, ApoCIII, and FA concentrations were measured. Data were analyzed by regression models adjusted for FAs and other potential confounders, such as sex, age, BMI, diabetes, smoking, and lipid-lowering therapies. The in vitro effects of FAs were tested by incubating HepG2 hepatoma cells with increasing concentrations of selected FAs, and the mRNA and protein contents in the cells were quantified by real-time RT-PCR and LC-MS/MS analyses. RESULTS: Among all the analyzed FAs, myristic acid (14:0) showed the most robust correlations with both TGs (R = 0.441, P = 2.6 × 10-66) and ApoCIII (R = 0.327, P = 1.1 × 10-31). By multiple regression analysis, myristic acid was the best predictor of both plasma TG and ApoCIII variability. Plasma TG and ApoCIII concentrations increased progressively at increasing concentrations of myristic acid, independently of CAD diagnosis and gender. Consistent with these data, in the in vitro experiments, an ∼2-fold increase in the expression levels of the ApoCIII mRNA and protein was observed after incubation with 250 µM myristic acid. A weaker effect (∼30% increase) was observed for palmitic acid, whereas incubation with oleic acid did not affect ApoCIII protein or gene expression. CONCLUSIONS: Plasma myristic acid is associated with increased ApoCIII concentrations in cardiovascular patients. In vitro experiments indicated that myristic acid stimulates ApoCIII expression in HepG2 cells.


Assuntos
Apolipoproteína C-III/sangue , Doenças Cardiovasculares/sangue , Ácido Mirístico/sangue , Idoso , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Ácido Mirístico/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Expert Rev Proteomics ; 16(8): 681-693, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31361162

RESUMO

Introduction: Development of specific biomarkers aiding early diagnosis of heart failure is an ongoing challenge. Biomarkers commonly used in clinical routine usually act as readouts of an already existing acute condition rather than disease initiation. Functional decline of cardiac muscle is greatly aggravated by increased oxidative stress and damage of proteins. Oxidative post-translational modifications occur already at early stages of tissue damage and are thus regarded as potential up-coming disease markers. Areas covered: Clinical practice regarding commonly used biomarkers for heart disease is briefly summarized. The types of oxidative post-translational modification in cardiac pathologies are discussed with a special focus on available quantitative techniques and characteristics of individual modifications with regard to their stability and analytical accessibility. As irreversible oxidative modifications trigger protein degradation pathways or cause protein aggregation, both influencing biomarker abundance, a chapter is dedicated to their regulation in the heart.


Assuntos
Cardiopatias/metabolismo , Insuficiência Cardíaca/metabolismo , Animais , Humanos , Oxirredução , Estresse Oxidativo/fisiologia , Agregação Patológica de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional
11.
J Proteome Res ; 17(4): 1415-1425, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29457907

RESUMO

Adipose triglyceride lipase (ATGL) catalyzes the rate limiting step in triacylglycerol breakdown in adipocytes but is expressed in most tissues. The enzyme was shown to be lost in many human tumors, and its loss may play a role in early stages of cancer development. Here, we report that loss of ATGL supports a more-aggressive cancer phenotype in a model system in which ATGL was deleted in A549 lung cancer cells by CRISPR/Cas9. We observed that loss of ATGL led to triacylglycerol accumulation in lipid droplets and higher levels of cellular phospholipid and bioactive lipid species (lyso- and ether-phospholipids). Label-free quantitative proteomics revealed elevated expression of the pro-oncogene SRC kinase in ATGL depleted cells, which was also found on mRNA level and confirmed on protein level by Western blot. Consistently, higher expression of phosphorylated (active) SRC (Y416 phospho-SRC) was observed in ATGL-KO cells. Cells depleted of ATGL migrated faster, which was dependent on SRC kinase activity. We propose that loss of ATGL may thus increase cancer aggressiveness by activation of pro-oncogenic signaling via SRC kinase and increased levels of bioactive lipids.


Assuntos
Lipase/deficiência , Neoplasias Pulmonares/patologia , Triglicerídeos/metabolismo , Células A549 , Movimento Celular/efeitos dos fármacos , Deleção de Genes , Humanos , Lipase/genética , Metabolismo dos Lipídeos , Fenótipo , Proteômica , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/análise , Quinases da Família src/metabolismo , Quinases da Família src/farmacologia
12.
Diabetologia ; 59(8): 1743-52, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27153842

RESUMO

AIMS/HYPOTHESIS: Lysosomal acid lipase (LAL) hydrolyses cholesteryl esters and triacylglycerols (TG) within lysosomes to mobilise NEFA and cholesterol. Since LAL-deficient (Lal (-/-) ) mice suffer from progressive loss of adipose tissue and severe accumulation of lipids in hepatic lysosomes, we hypothesised that LAL deficiency triggers alternative energy pathway(s). METHODS: We studied metabolic adaptations in Lal (-/-) mice. RESULTS: Despite loss of adipose tissue, Lal (-/-) mice show enhanced glucose clearance during insulin and glucose tolerance tests and have increased uptake of [(3)H]2-deoxy-D-glucose into skeletal muscle compared with wild-type mice. In agreement, fasted Lal (-/-) mice exhibit reduced glucose and glycogen levels in skeletal muscle. We observed 84% decreased plasma leptin levels and significantly reduced hepatic ATP, glucose, glycogen and glutamine concentrations in fed Lal (-/-) mice. Markedly reduced hepatic acyl-CoA concentrations decrease the expression of peroxisome proliferator-activated receptor α (PPARα) target genes. However, treatment of Lal (-/-) mice with the PPARα agonist fenofibrate further decreased plasma TG (and hepatic glucose and glycogen) concentrations in Lal (-/-) mice. Depletion of hepatic nuclear factor 4α and forkhead box protein a2 in fasted Lal (-/-) mice might be responsible for reduced expression of microsomal TG transfer protein, defective VLDL synthesis and drastically reduced plasma TG levels. CONCLUSIONS/INTERPRETATION: Our findings indicate that neither activation nor inactivation of PPARα per se but rather the availability of hepatic acyl-CoA concentrations regulates VLDL synthesis and subsequent metabolic adaptations in Lal (-/-) mice. We conclude that decreased plasma VLDL production enhances glucose uptake into skeletal muscle to compensate for the lack of energy supply.


Assuntos
VLDL-Colesterol/metabolismo , Resistência à Insulina/fisiologia , Esterol Esterase/metabolismo , Animais , VLDL-Colesterol/genética , Feminino , Glucose/metabolismo , Resistência à Insulina/genética , Lipólise/genética , Lipólise/fisiologia , Fígado/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Esterol Esterase/deficiência , Esterol Esterase/genética , Triglicerídeos/metabolismo
13.
Biotechnol Biofuels Bioprod ; 17(1): 110, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103876

RESUMO

BACKGROUND: Due to increasing ecological concerns, microbial production of biochemicals from sustainable carbon sources like acetate is rapidly gaining importance. However, to successfully establish large-scale production scenarios, a solid understanding of metabolic driving forces is required to inform bioprocess design. To generate such knowledge, we constructed isopropanol-producing Escherichia coli W strains. RESULTS: Based on strain screening and metabolic considerations, a 2-stage process was designed, incorporating a growth phase followed by a nitrogen-starvation phase. This process design yielded the highest isopropanol titers on acetate to date (13.3 g L-1). Additionally, we performed shotgun and acetylated proteomics, and identified several stress conditions in the bioreactor scenarios, such as acid stress and impaired sulfur uptake. Metabolic modeling allowed for an in-depth characterization of intracellular flux distributions, uncovering cellular demand for ATP and acetyl-CoA as limiting factors for routing carbon toward the isopropanol pathway. Moreover, we asserted the importance of a balance between fluxes of the NADPH-providing isocitrate dehydrogenase (ICDH) and the product pathway. CONCLUSIONS: Using the newly gained system-level understanding for isopropanol production from acetate, we assessed possible engineering approaches and propose process designs to maximize production. Collectively, our work contributes to the establishment and optimization of acetate-based bioproduction systems.

14.
Cell Death Dis ; 15(10): 782, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39468028

RESUMO

Alzheimer's disease (AD) affects millions of people worldwide and represents the most prevalent form of dementia. Treatment strategies aiming to interfere with the formation of amyloid ß (Aß) plaques and neurofibrillary tangles (NFTs), the two major AD hallmarks, have shown modest or no effect. Recent evidence suggests that ferroptosis, a type of programmed cell death caused by iron accumulation and lipid peroxidation, contributes to AD pathogenesis. The existing link between ferroptosis and AD has been largely based on cell culture and animal studies, while evidence from human brain tissue is limited. Here we evaluate if Aß is associated with ferroptosis pathways in post-mortem human brain tissue and whether ferroptosis inhibition could attenuate Aß-related effects in human brain organoids. Performing positive pixel density scoring on immunohistochemically stained post-mortem Brodmann Area 17 sections revealed that the progression of AD pathology was accompanied by decreased expression of nuclear receptor co-activator 4 and glutathione peroxidase 4 in the grey matter. Differentiating between white and grey matter, allowed for a more precise understanding of the disease's impact on different brain regions. In addition, ferroptosis inhibition prevented Aß pathology, decreased lipid peroxidation and restored iron storage in human AD iPSCs-derived brain cortical organoids at day 50 of differentiation. Differential gene expression analysis of RNAseq of AD organoids compared to isogenic controls indicated activation of the ferroptotic pathway. This was also supported by results from untargeted proteomic analysis revealing significant changes between AD and isogenic brain organoids. Determining the causality between the development of Aß plaques and the deregulation of molecular pathways involved in ferroptosis is crucial for developing potential therapeutic interventions.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Progressão da Doença , Ferroptose , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Peroxidação de Lipídeos , Ferro/metabolismo , Organoides/metabolismo , Feminino
15.
J Control Release ; 369: 668-683, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548064

RESUMO

Local and long-lasting administration of potent chemotherapeutics is a promising therapeutic intervention to increase the efficiency of chemotherapy of hard-to-treat tumors such as the most lethal brain tumors, glioblastomas (GBM). However, despite high toxicity for GBM cells, potent chemotherapeutics such as gemcitabine (Gem) cannot be widely implemented as they do not efficiently cross the blood brain barrier (BBB). As an alternative method for continuous administration of Gem, we here operate freestanding iontronic pumps - "GemIPs" - equipped with a custom-synthesized ion exchange membrane (IEM) to treat a GBM tumor in an avian embryonic in vivo system. We compare GemIP treatment effects with a topical metronomic treatment and observe that a remarkable growth inhibition was only achieved with steady dosing via GemIPs. Daily topical drug administration (at the maximum dosage that was not lethal for the embryonic host organism) did not decrease tumor sizes, while both treatment regimes caused S-phase cell cycle arrest and apoptosis. We hypothesize that the pharmacodynamic effects generate different intratumoral drug concentration profiles for each technique, which causes this difference in outcome. We created a digital model of the experiment, which proposes a fast decay in the local drug concentration for the topical daily treatment, but a long-lasting high local concentration of Gem close to the tumor area with GemIPs. Continuous chemotherapy with iontronic devices opens new possibilities in cancer treatment: the long-lasting and highly local dosing of clinically available, potent chemotherapeutics to greatly enhance treatment efficiency without systemic side-effects. SIGNIFICANCE STATEMENT: Iontronic pumps (GemIPs) provide continuous and localized administration of the chemotherapeutic gemcitabine (Gem) for treating glioblastoma in vivo. By generating high and constant drug concentrations near the vascularized growing tumor, GemIPs offer an efficient and less harmful alternative to systemic administration. Continuous GemIP dosing resulted in remarkable growth inhibition, superior to daily topical Gem application at higher doses. Our digital modelling shows the advantages of iontronic chemotherapy in overcoming limitations of burst release and transient concentration profiles, and providing precise control over dosing profiles and local distribution. This technology holds promise for future implants, could revolutionize treatment strategies, and offers a new platform for studying the influence of timing and dosing dependencies of already-established drugs in the fight against hard-to-treat tumors.


Assuntos
Apoptose , Neoplasias Encefálicas , Desoxicitidina , Gencitabina , Glioblastoma , Animais , Desoxicitidina/análogos & derivados , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Embrião de Galinha , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Administração Metronômica
16.
Sci Rep ; 13(1): 14995, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696945

RESUMO

Despite the high prevalence of heart failure in the western world, there are few effective treatments. Fibulin-3 is a protein involved in extracellular matrix (ECM) structural integrity, however its role in the heart is unknown. We have demonstrated, using single cell RNA-seq, that fibulin-3 was highly expressed in quiescent murine cardiac fibroblasts, with expression highest prior to injury and late post-infarct (from ~ day-28 to week-8). In humans, fibulin-3 was upregulated in left ventricular tissue and plasma of heart failure patients. Fibulin-3 knockout (Efemp1-/-) and wildtype mice were subjected to experimental myocardial infarction. Fibulin-3 deletion resulted in significantly higher rate of cardiac rupture days 3-6 post-infarct, indicating a weak and poorly formed scar, with severe ventricular remodelling in surviving mice at day-28 post-infarct. Fibulin-3 knockout mice demonstrated less collagen deposition at day-3 post-infarct, with abnormal collagen fibre-alignment. RNA-seq on day-3 infarct tissue revealed upregulation of ECM degradation and inflammatory genes, but downregulation of ECM assembly/structure/organisation genes in fibulin-3 knockout mice. GSEA pathway analysis showed enrichment of inflammatory pathways and a depletion of ECM organisation pathways. Fibulin-3 originates from cardiac fibroblasts, is upregulated in human heart failure, and is necessary for correct ECM organisation/structural integrity of fibrotic tissue to prevent cardiac rupture post-infarct.


Assuntos
Proteínas da Matriz Extracelular , Insuficiência Cardíaca , Ruptura Cardíaca , Infarto do Miocárdio , Animais , Humanos , Camundongos , Coração , Insuficiência Cardíaca/genética , Ruptura Cardíaca/genética , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Proteínas da Matriz Extracelular/genética
17.
Antioxidants (Basel) ; 10(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072235

RESUMO

Timely centrifugation of blood for plasma preparation is a key step to ensure high plasma quality for analytics. Delays during preparation can significantly influence readouts of key clinical parameters. However, in a routine clinical environment, a strictly controlled timeline is often not feasible. The next best approach is to control for sample preparation delays by a marker that provides a readout of the time-dependent degradation of the sample. In this study, we explored the usefulness of glutathione status as potential marker of plasma preparation delay. As the concentration of glutathione in erythrocytes is at least two orders of magnitude higher than in plasma, even the slightest leakage of glutathione from the cells can be readily observed. Over the 3 h observation period employed in this study, we observed a linear increase of plasma concentrations of both reduced (GSH) and oxidized glutathione (GSSG). Artificial oxidation of GSH is prevented by rapid alkylation with N-ethylmaleimide directly in the blood sampling vessel as recently published. The observed relative leakage of GSH was significantly higher than that of GSSG. A direct comparison with plasma lactate dehydrogenase activity, a widely employed hemolysis marker, clearly demonstrated the superiority of our approach for quality control. Moreover, we show that the addition of the thiol alkylating reagent NEM directly to the blood tubes does not influence downstream analysis of other clinical parameters. In conclusion, we report that GSH gives an excellent readout of the duration of plasma preparation and the associated pre-analytical errors.

18.
Adv Mater Technol ; 6(5): 2001302, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34195355

RESUMO

Successful treatment of glioblastoma multiforme (GBM), the most lethal tumor of the brain, is presently hampered by (i) the limits of safe surgical resection and (ii) "shielding" of residual tumor cells from promising chemotherapeutic drugs such as Gemcitabine (Gem) by the blood brain barrier (BBB). Here, the vastly greater GBM cell-killing potency of Gem compared to the gold standard temozolomide is confirmed, moreover, it shows neuronal cells to be at least 104-fold less sensitive to Gem than GBM cells. The study also demonstrates the potential of an electronically-driven organic ion pump ("GemIP") to achieve controlled, targeted Gem delivery to GBM cells. Thus, GemIP-mediated Gem delivery is confirmed to be temporally and electrically controllable with pmol min-1 precision and electric addressing is linked to the efficient killing of GBM cell monolayers. Most strikingly, GemIP-mediated GEM delivery leads to the overt disintegration of targeted GBM tumor spheroids. Electrically-driven chemotherapy, here exemplified, has the potential to radically improve the efficacy of GBM adjuvant chemotherapy by enabling exquisitely-targeted and controllable delivery of drugs irrespective of whether these can cross the BBB.

19.
Metabolites ; 10(2)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079090

RESUMO

Determination of the ratio of reduced to oxidized glutathione is of profound clinical interest in assessing the oxidative status of tissues and body fluids. However, this ratio is not yet a routine clinical parameter due to the analytically challenging interconversion of reduced (free) glutathione to oxidized (bound) glutathione. We aimed to facilitate this ratio determination in order to aid its incorporation as a routine clinical parameter. To this end, we developed a simple derivatization route that yields different isotopologues of N-ethylmaleimide alkylated glutathione from reduced and oxidized glutathione (after its chemical reduction) for mass spectrometric analysis. A third isotopologue can be used as isotopic standard for simultaneous absolute quantification. As all isotopologues have similar chromatographic properties, matrix effects arising from different sample origins can only impact method sensitivity but not quantification accuracy. Robustness, simplified data analysis, cost effectiveness by one common standard, and highly improved mass spectrometric sensitivity by conversion of oxidized glutathione to an alkylated glutathione isotopologue are the main advantages of our approach. We present a method fully optimized for blood, plasma, serum, cell, and tissue samples. In addition, we propose production of N-ethylmaleimide customized blood collection tubes to even further facilitate the analysis in a clinical setting.

20.
Cardiovasc Res ; 116(2): 339-352, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166588

RESUMO

AIMS: Lipotoxic cardiomyopathy in diabetic and obese patients typically encompasses increased cardiac fatty acid (FA) uptake eventually surpassing the mitochondrial oxidative capacity. Lowering FA utilization via inhibition of lipolysis represents a strategy to counteract the development of lipotoxic heart dysfunction. However, defective cardiac triacylglycerol (TAG) catabolism and FA oxidation in humans (and mice) carrying mutated ATGL alleles provokes lipotoxic heart dysfunction questioning a therapeutic approach to decrease cardiac lipolysis. Interestingly, decreased lipolysis via cardiac overexpression of Perilipin 5 (Plin5), a binding partner of ATGL, is compatible with normal heart function and lifespan despite massive cardiac lipid accumulation. Herein, we decipher mechanisms that protect Plin5 transgenic mice from the development of heart dysfunction. METHODS AND RESULTS: We generated mice with cardiac-specific overexpression of Plin5 encoding a serine-155 to alanine exchange (Plin5-S155A) of the protein kinase A phosphorylation site, which has been suggested as a prerequisite to stimulate lipolysis and may play a crucial role in the preservation of heart function. Plin5-S155A mice showed a substantial increase in cardiac TAG and ceramide levels, which was comparable to mice overexpressing non-mutated Plin5. Lipid accumulation was compatible with normal heart function even under mild stress. Plin5-S155A mice showed reduced cardiac FA oxidation but normal ATP production and changes in the Plin5-S155A phosphoproteome compared to Plin5 transgenic mice. Interestingly, mitochondrial recruitment of dynamin-related protein 1 (Drp1) was markedly reduced in cardiac muscle of Plin5-S155A and Plin5 transgenic mice accompanied by decreased phosphorylation of mitochondrial fission factor, a mitochondrial receptor of Drp1. CONCLUSIONS: This study suggests that low cardiac lipolysis is associated with reduced mitochondrial fission and may represent a strategy to combat the development of lipotoxic heart dysfunction.


Assuntos
Tecido Adiposo/metabolismo , Cardiopatias/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipólise , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Trifosfato de Adenosina/metabolismo , Tecido Adiposo/patologia , Animais , Células COS , Ceramidas/metabolismo , Chlorocebus aethiops , Modelos Animais de Doenças , Dinaminas/metabolismo , Ácidos Graxos/metabolismo , Cardiopatias/genética , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/metabolismo , Camundongos Mutantes , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/genética , Mutação , Miócitos Cardíacos/patologia , Oxirredução , Fosforilação , Ratos , Transdução de Sinais , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA