Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Malar J ; 11: 250, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22849771

RESUMO

BACKGROUND: Malaria parasites undergo, in the vertebrate host, a developmental switch from asexual replication to sexual differentiation leading to the formation of gametocytes, the only form able to survive in the mosquito vector. Regulation of the onset of the sexual phase remains largely unknown and represents an important gap in the understanding of the parasite's complex biology. METHODS: The expression and function of the Nima-related kinase Pfnek-4 during the early sexual development of the human malaria parasite Plasmodium falciparum were investigated, using three types of transgenic Plasmodium falciparum 3D7 lines: (i) episomally expressing a Pfnek-4-GFP fusion protein under the control of its cognate pfnek-4 promoter; (ii) episomally expressing negative or positive selectable markers, yeast cytosine deaminase-uridyl phosphoribosyl transferase, or human dihydrofolate reductase, under the control of the pfnek-4 promoter; and (iii) lacking a functional pfnek-4 gene. Parasite transfectants were analysed by fluorescence microscopy and flow cytometry. In vitro growth rate and gametocyte formation were determined by Giemsa-stained blood smears. RESULTS: The Pfnek-4-GFP protein was found to be expressed in stage II to V gametocytes and, unexpectedly, in a subset of asexual-stage parasites undergoing schizogony. Culture conditions stimulating gametocyte formation resulted in significant increase of this schizont subpopulation. Moreover, sorted asexual parasites expressing the Pfnek-4-GFP protein displayed elevated gametocyte formation when returned to in vitro culture in presence of fresh red blood cells, when compared to GFP- parasites from the same initial population. Negative selection of asexual parasites expressing pfnek-4 showed a marginal reduction in growth rate, whereas positive selection caused a marked reduction in parasitaemia, but was not sufficient to completely abolish proliferation. Pfnek-4- clones are not affected in their asexual growth and produced normal numbers of stage V gametocytes. CONCLUSIONS: The results indicate that Pfnek-4 is not strictly gametocyte-specific, and is expressed in a small subset of asexual parasites displaying high rate conversion to sexual development. Pfnek-4 is not required for erythrocytic schizogony and gametocytogenesis. This is the first study to report the use of a molecular marker for the sorting of sexually-committed schizont stage P. falciparum parasites, which opens the way to molecular characterization of this pre-differentiated subpopulation.


Assuntos
Regulação da Expressão Gênica , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Citometria de Fluxo , Deleção de Genes , Perfilação da Expressão Gênica , Genes Reporter , Microscopia de Fluorescência , Quinases Relacionadas a NIMA , Plasmodium falciparum/genética
2.
Autophagy ; 9(10): 1540-52, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24025672

RESUMO

Amino acid utilization is important for the growth of the erythrocytic stages of the human malaria parasite Plasmodium falciparum, however the molecular mechanism that permits survival of the parasite during conditions of limiting amino acid supply is poorly understood. We provide data here suggesting that an autophagy pathway functions in P. falciparum despite the absence of a typical lysosome for digestion of the autophagosomes. It involves PfATG8, which has a C-terminal glycine which is absolutely required for association of the protein with autophagosomes. Amino acid starvation provoked increased colocalization between PfATG8- and PfRAB7-labeled vesicles and acidification of the colabeled structures consistent with PfRAB7-mediated maturation of PfATG8-positive autophagosomes; this is a rapid process facilitating parasite survival. Immuno-electron microscopic analyses detected PfRAB7 and PfATG8 on double-membrane-bound vesicles and also near or within the parasite's food vacuole, consistent with autophagosomes fusing with the endosomal system before being routed to the food vacuole for digestion. In nonstarved parasites, PfATG8, but not PfRAB7, was found on the intact apicoplast membrane and on apicoplast-targeted vesicles and apicoplast remnants when the formation of the organelle was disrupted; a localization also requiring the C-terminal glycine. These findings suggest that in addition to a classical role in autophagy, which involves the PfRAB7-endosomal system and food vacuole, PfATG8 is associated with apicoplast-targeted vesicles and the mature apicoplast, and as such contributes to apicoplast formation and maintenance. Thus, PfATG8 may be unique in having such a second role in addition to the formation of autophagosomes required for classical autophagy.


Assuntos
Apicoplastos/metabolismo , Autofagia/fisiologia , Proteínas dos Microfilamentos/metabolismo , Fagossomos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Família da Proteína 8 Relacionada à Autofagia , Humanos , Plasmodium falciparum/citologia , Transporte Proteico/fisiologia , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA