RESUMO
Synthetic dyes are persistent organic environmental pollutants that can cause extensive damage to living beings and to the ecosystem as a whole. Cost-effective, sustainable, and efficient strategies to deal with this type of pollution are necessary as it commonly resists conventional water treatment methods. Silver nanoparticles (AgNPs) synthesized using the aqueous extract from the leaves, stem, and fruits of Leucaena leucocephala (Leucena) were produced and characterized through UV-vis, TEM, EDS, SDL, XPS, XRD, and zeta potential, and they proved to be able to promote adsorption to remediate methylene blue and tartrazine pollution in water. The nanoremediation was performed and did not require direct exposure to sunlight or any special lamp or a specific reduction agent. The AgNPs produced using the extract from the leaves exhibited the best performance in nanoremediation and also presented antioxidant activity that surpassed the one from butylated hydroxytoluene (BHT). Consequently, it is an interesting nanotool to use in dye nanoremediation and/or as an antioxidant nanostructure.
Assuntos
Frutas , Nanopartículas Metálicas , Antioxidantes/farmacologia , Ecossistema , Prata , CorantesRESUMO
Nanotechnology has the potential to offer elegant solutions to problems experienced in the medical field, such as poor drug delivery efficiency and microbial resistance. In this sense, it is interesting to associate nanomaterials with substances that also offer desirable properties to favor human health. Green propolis is an example of a material that contains some of these useful substances. The phenolic acids present in this type of propolis have already been proven to present, for example, antimicrobial, immunostimulant, and antioxidant activities. In this minireview, recent nano solutions, presented through manuscripts have been recently published based on green propolis, receive attention due to their useful properties in the medical field. Limitations to the clinical use of nanomaterials and the future prospects are also addressed.
RESUMO
Microinjection is commonly performed to achieve fish transgenesis; however, due to difficulties associated with this technique, new strategies are being developed. Here we evaluate the potential of lentiviral particles to genetically modify Nile tilapia cells to achieve transgenesis using three different approaches: spermatogonial stem cell (SSC) genetic modification and transplantation (SC), in vivo transduction of gametes (GT), and fertilised egg transduction (ET). The SC protocol using larvae generates animals with sustained production of modified sperm (80% of animals with 77% maximum sperm fluorescence [MSF]), but is a time-consuming protocol (sexual maturity in Nile tilapia is achieved at 6 months of age). GT is a faster technique, but the modified gamete production is temporary (70% of animals with 52% MSF). ET is an easier way to obtain mosaic transgenic animals compared to microinjection of eggs, but non-site-directed integration in the fish genome can be a problem. In this study, PI3Kc2α gene disruption impaired development during the embryo stage and caused premature death. The manipulator should choose a technique based on the time available for transgenic obtainment and if this generation is required to be continuous or not.