Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(5): 1941-1954, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35567793

RESUMO

Reduced empathy and elevated alexithymia are observed in autism spectrum disorder (ASD), which has been linked to altered asymmetry in brain morphology. Here, we investigated whether trait autism, empathy, and alexithymia in the general population is associated with brain morphological asymmetry. We determined left-right asymmetry indexes for cortical thickness and cortical surface area (CSA) and applied these features to a support-vector regression model that predicted trait autism, empathy, and alexithymia. Results showed that less leftward asymmetry of CSA in the gyrus rectus (a subregion of the orbitofrontal cortex) predicted more difficulties in social functioning, as well as reduced cognitive empathy and elevated trait alexithymia. Meta-analytic decoding of the left gyrus rectus annotated functional items related to social cognition. Furthermore, the link between gyrus rectus asymmetry and social difficulties was accounted by trait alexithymia and cognitive empathy. These results suggest that gyrus rectus asymmetry could be a shared neural correlate among trait alexithymia, cognitive empathy, and social functioning in neurotypical adults. Left-right asymmetry of gyrus rectus influenced social functioning by affecting the cognitive processes of emotions in the self and others. Interventions that increase leftward asymmetry of the gyrus rectus might improve social functioning for individuals with ASD.


Assuntos
Transtorno do Espectro Autista , Empatia , Humanos , Adulto , Sintomas Afetivos/epidemiologia , Sintomas Afetivos/psicologia , Cognição , Córtex Pré-Frontal
2.
Cereb Cortex ; 33(17): 9867-9876, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37415071

RESUMO

Menstrually-related migraine (MM) is a primary migraine in women of reproductive age. The underlying neural mechanism of MM was still unclear. In this study, we aimed to reveal the case-control differences in network integration and segregation for the morphometric similarity network of MM. Thirty-six patients with MM and 29 healthy females were recruited and underwent MRI scanning. The morphometric features were extracted in each region to construct the single-subject interareal cortical connection using morphometric similarity. The network topology characteristics, in terms of integration and segregation, were analyzed. Our results revealed that, in the absence of morphology differences, disrupted cortical network integration was found in MM patients compared to controls. The patients with MM showed a decreased global efficiency and increased characteristic path length compared to healthy controls. Regional efficiency analysis revealed the decreased efficiency in the left precentral gyrus and bilateral superior temporal gyrus contributed to the decreased network integration. The increased nodal degree centrality in the right pars triangularis was positively associated with the attack frequency in MM. Our results suggested MM would reorganize the morphology in the pain-related brain regions and reduce the parallel information processing capacity of the brain.


Assuntos
Encéfalo , Transtornos de Enxaqueca , Humanos , Feminino , Encéfalo/diagnóstico por imagem , Transtornos de Enxaqueca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal , Dor
3.
Cerebrovasc Dis ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38118431

RESUMO

INTRODUCTION: After a stroke, individuals commonly experience visual problems and impaired cognitive function, which can significantly impact their daily life. In addition to visual neglect and hemianopia, stroke survivors often have difficulties with visual search tasks. Researchers are increasingly interested in using eye tracking technology to study cognitive processing and determine whether eye tracking metrics can be used to screen and assess cognitive impairment in patients with neurological disorders. As such, assessing these areas and understanding their relationship is crucial for effective stroke rehabilitation. METHODS: We enrolled 60 stroke patients in this study and evaluated their eye tracking performance and cognitive function through a series of tests. Subsequently, we divided the subjects into two groups based on their scores on the HK-MoCA test, with scores below 21 out of 30 indicating cognitive impairment. We then compared the eye tracking metrics between the two groups and identified any significant differences that existed. Spearman correlation analysis was conducted to explore the relationship between clinical test scores and eye tracking metrics. Moreover, we employed a Mann-Whitney U test to compare eye tracking metrics between groups with and without cognitive impairment. RESULTS: Our results revealed significant correlations between various eye tracking metrics and cognitive tests (p=<.001-.041). Furthermore, the group without cognitive impairment demonstrated higher saccade velocity, gaze path velocity, and shorter time to target than the group with cognitive impairment (p=<.001-.040). ROC curve analyses were performed, and the optimal cut-off values for gaze path velocity and saccade velocity were 329.665 (px/s) (sensitivity= 0.80, specificity = 0.533) and 2.150 (px/s) (sensitivity= 0.733, specificity= 0.633), respectively. CONCLUSIONS: Our findings indicate a significant correlation between eye tracking metrics and cognitive test scores. Furthermore, the group with cognitive impairment exhibited a significant difference in these metrics, and a cut-off value was identified to predict whether a client was experiencing cognitive impairment.

4.
Sensors (Basel) ; 23(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37448037

RESUMO

This paper proposes a method for accurate 3D posture sensing of the soft actuators, which could be applied to the closed-loop control of soft robots. To achieve this, the method employs an array of miniaturized sponge resistive materials along the soft actuator, which uses long short-term memory (LSTM) neural networks to solve the end-to-end 3D posture for the soft actuators. The method takes into account the hysteresis of the soft robot and non-linear sensing signals from the flexible bending sensors. The proposed approach uses a flexible bending sensor made from a thin layer of conductive sponge material designed for posture sensing. The LSTM network is used to model the posture of the soft actuator. The effectiveness of the method has been demonstrated on a finger-size 3 degree of freedom (DOF) pneumatic bellow-shaped actuator, with nine flexible sponge resistive sensors placed on the soft actuator's outer surface. The sensor-characterizing results show that the maximum bending torque of the sensor installed on the actuator is 4.7 Nm, which has an insignificant impact on the actuator motion based on the working space test of the actuator. Moreover, the sensors exhibit a relatively low error rate in predicting the actuator tip position, with error percentages of 0.37%, 2.38%, and 1.58% along the x-, y-, and z-axes, respectively. This work is expected to contribute to the advancement of soft robot dynamic posture perception by using thin sponge sensors and LSTM or other machine learning methods for control.


Assuntos
Robótica , Porosidade , Desenho de Equipamento , Movimento (Física) , Robótica/métodos , Percepção
5.
Neuroimage ; 263: 119599, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36049698

RESUMO

Alterations of empathy for others' pain among patients with chronic pain remained inconsistent. Here, applying a capsaicin-based ongoing pain model on healthy participants, this study investigated how ongoing first-hand pain influences empathic reactions to vicarious pain stimuli. Healthy participants were randomly treated with topical capsaicin cream (capsaicin group) or hand cream (control group) on the left forearm. Video clips showing limbs in painful and non-painful situations were used to induce empathic responses. The capsaicin group showed greater empathic neural responses in the right primary somatosensory cortex (S1) than the control group but smaller responses in the left anterior insula (AI) accompanied with smaller empathic pain-intensity ratings. Notably, the intensity of ongoing pain negatively correlated with empathy-related neural responses in the left AI. Inter-subject phase synchronization analysis was used to assess stimulus-dependent dynamic functional connectivity within or between brain regions engaged in pain empathy. The capsaicin group showed greater empathy-related neural synchronization within S1 and between S1 and AI, but less synchronization within AI and between AI and MCC. Behaviorally, the differential inter-subject pain-intensity rating alignment between painful and non-painful videos was more positive for the capsaicin group than for the control group, and this effect was partially mediated by the inter-subject neural synchronization between S1 and AI. These results suggest that ongoing first-hand pain facilitates neural activation and synchronization within brain regions associated with empathy-related somatosensory resonance at the cost of inhibiting activation and synchronization within brain regions engaged in empathy-related affective sharing.


Assuntos
Capsaicina , Empatia , Humanos , Capsaicina/farmacologia , Imageamento por Ressonância Magnética/métodos , Dor , Encéfalo/fisiologia , Mapeamento Encefálico
6.
J Neuroeng Rehabil ; 19(1): 136, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482468

RESUMO

BACKGROUND: The lack of the rehabilitation professionals is a global issue and it is becoming more serious during COVID-19. An Augmented Reality Rehabilitation System (AR Rehab) was developed for virtual training delivery. The virtual training was integrated into the participants' usual care to reduce the human trainers' effort so that the manpower scarcity can be eased. This also resulted in the reduction of the contact rate in pandemics. OBJECTIVE: To investigate the feasibility of the AR Rehab-based virtual training when integrated into the usual care in a real-world pandemic setting, by answering questions of whether the integrated trials can help fulfill the training goal and whether the trials can be delivered when resources are limited because of COVID-19. METHODS: Chronic stroke participants were randomly assigned to either a centre-based group (AR-Centre) or a home-based group (AR-Home) for a trial consisting of 20 sessions delivered in a human-machine integrated intervention. The trial of the AR-Centre was human training intensive with 3/4 of each session delivered by human trainers (PTs/OTs/Assistants) and 1/4 delivered by the virtual trainer (AR Rehab). The trial of the AR-Home was virtual training intensive with 1/4 and 3/4 of each session delivered by human and virtual trainers, respectively. Functional assessments including Fugl-Meyer Assessment for Upper Extremity (FMA-UE) and Lower Extremity (FMA-LE), Functional Ambulation Category (FAC), Berg Balance Scale (BBS), Barthel Index (BI) of Activities of Daily Living (ADL), and Physical Component Summary (SF-12v2 PCS) and Mental Component Summary (SF-12v2 MCS) of the 12-Item Short Form Health Survey (SF-12v2), were conducted before and after the intervention. User experience (UX) using questionnaires were collected after the intervention. Time and human resources required to deliver the human and virtual training, respectively, and the proportion of participants with clinical significant improvement were also used as supplementary measures. RESULTS: There were 129 patients from 10 rehabilitation centres enrolled in the integrated program with 39 of them were selected for investigation. Significant functional improvement in FMA-UE (AR-Centre: p = 0.0022, AR-Home: p = 0.0043), FMA-LE (AR-Centre: p = 0.0007, AR-Home: p = 0.0052), SF-12v2 PCS (AR-Centre: p = 0.027, AR-Home: p = 0.036) were observed in both groups. Significant improvement in balance ability (BBS: p = 0.0438), and mental components (SF-12v2 MCS: p = 0.017) were found in AR-Centre group, while activities of daily living (BI: p = 0.0007) was found in AR-Home group. Contact rate was reduced by 30.75-72.30% within AR-All, 0.00-60.00% within AR-Centre, and 75.00-90.00% within AR-Home. CONCLUSION: The human-machine integrated mode was effective and efficient to reduce the human rehabilitation professionals' effort while fulfilling the training goals. It eased the scarcity of manpower and reduced the contact rate during the pandemics.


Assuntos
COVID-19 , Reabilitação do Acidente Vascular Cerebral , Humanos , Atividades Cotidianas
7.
Sensors (Basel) ; 22(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36298057

RESUMO

Soft robots can create complicated structures and functions for rehabilitation. The posture perception of soft actuators is critical for performing closed-loop control for a precise location. It is essential to have a sensor with both soft and flexible characteristics that does not affect the movement of a soft actuator. This paper presents a novel end-to-end posture perception method that employs flexible sensors with kirigami-inspired structures and long short-term memory (LSTM) neural networks. The sensors were developed with conductive sponge materials. With one-step calibration from the sensor output, the posture of the soft actuator could be calculated by the LSTM network. The method was validated by attaching the developed sensors to a soft fiber-reinforced bending actuator. The results showed the accuracy of posture prediction of sponge sensors with three kirigami-inspired structures ranged from 0.91 to 0.97 in terms of R2. The sponge sensors only generated a resistive torque value of 0.96 mNm at the maximum bending position when attached to a soft actuator, which would minimize the effect on actuator movement. The kirigami-inspired flexible sponge sensor could in future enhance soft robotic development.


Assuntos
Robótica , Robótica/métodos , Desenho de Equipamento , Porosidade , Memória de Curto Prazo , Redes Neurais de Computação , Postura , Percepção
8.
Neuroimage ; 238: 118249, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116146

RESUMO

Previous behavioral studies have shown that sharing painful experiences can strengthen social bonds and promote mutual prosociality, yet the neural mechanisms underlying this phenomenon remain unclear. We hypothesized that sharing a painful experience induces brain-to-brain synchronization and mutual empathy for each other's pain between pain-takers and pain-observers, which then leads to enhanced social bonding. To test this hypothesis, we adopted an electroencephalographic (EEG) hyper-scanning technique to assess neuronal and behavioral activity during a Pain-Sharing task in which high- or low-intensity pain stimulation was randomly delivered to one participant of a dyad on different experimental trials. Single-brain analysis showed that sensorimotor α-oscillation power was suppressed more when expecting high-intensity pain than when expecting low-intensity pain similarly for self-directed or partner-directed pain. Dual-brain analysis revealed that expecting high-intensity pain induced greater brain-to-brain synchronization of sensorimotor α-oscillation phases between pain-takers and pain-observers than did expecting low-intensity pain. Mediation analysis further revealed that brain-to-brain synchronization of sensorimotor α-oscillations mediated the effects of pain-stimulation intensity on mutual affective sharing for partner-directed pain. This mutual affective empathy during the task predicted the social bonding, as indexed by prosocial inclinations measured after the task. These results support the hypothesis that sharing a painful experience triggers emotional resonance between pairs of individuals through brain-to-brain synchronization of neuronal α-oscillations recorded over the sensorimotor cortex, and this emotional resonance further strengthens social bonds and motivates prosocial behavior within pairs of individuals.


Assuntos
Encéfalo/fisiopatologia , Empatia/fisiologia , Dor/fisiopatologia , Adolescente , Eletroencefalografia , Emoções , Feminino , Humanos , Masculino , Dor/psicologia , Comportamento Social , Adulto Jovem
9.
Neuroradiology ; 63(5): 741-749, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33392732

RESUMO

PURPOSE: Menstrual-related migraine (MRM) results in moderate to severe intensity headaches accompanied by physical and emotional disability over time in women. Neuroimaging methodologies have advanced our understanding of migraine; however, the neural mechanisms of MRM are not clearly understood. METHODS: In this study, fourteen MRM patients in the interictal phase and fifteen age- and education-matched healthy control females were recruited. Resting-state functional magnetic resonance imaging (fMRI) and pulsed arterial spin labeling (PASL) MRI were collected for both the subject groups outside of their menstrual periods. Eigenvector centrality mapping (ECM) was performed on resting-state fMRI, and the relative cerebral blood flow (relCBF) was assessed using PASL-MRI. RESULTS: MRM patients showed a significantly increased eigenvector centrality in the right medial frontal gyrus compared to healthy controls. Seed-based ECM analysis revealed that increased centrality was associated with the right medial frontal gyrus's hyperconnectivity with the left insula and the right supplementary motor area. The perfusion MRI revealed significantly increased relCBF in the hyperconnected regions. Furthermore, the hyperconnection positively correlated with the attack frequency, while the hyperperfusion showed a positive correlation with the disease duration. CONCLUSION: The results suggest that menstrual-related migraine is associated with cerebral hyperconnection and hyperperfusion in critical pain-processing brain regions. Furthermore, this elevated cerebral activity is correlated with different aspects of functional impairment in MRM patients suggesting that perfusion analysis, along with whole-brain connectivity analysis, can provide a comprehensive understanding of neural mechanisms of MRM.


Assuntos
Encéfalo , Transtornos de Enxaqueca , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Feminino , Humanos , Imageamento por Ressonância Magnética , Transtornos de Enxaqueca/diagnóstico por imagem , Neuroimagem
10.
Neural Plast ; 2021: 8866613, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211549

RESUMO

Stroke is a leading cause of motor disability worldwide, and robot-assisted therapies have been increasingly applied to facilitate the recovery process. However, the underlying mechanism and induced neuroplasticity change remain partially understood, and few studies have investigated this from a multimodality neuroimaging perspective. The current study adopted BCI-guided robot hand therapy as the training intervention and combined multiple neuroimaging modalities to comprehensively understand the potential association between motor function alteration and various neural correlates. We adopted EEG-informed fMRI technique to understand the functional regions sensitive to training intervention. Additionally, correlation analysis among training effects, nonlinear property change quantified by fractal dimension (FD), and integrity of M1-M1 (M1: primary motor cortex) anatomical connection were performed. EEG-informed fMRI analysis indicated that for iM1 (iM1: ipsilesional M1) regressors, regions with significantly increased partial correlation were mainly located in contralesional parietal, prefrontal, and sensorimotor areas and regions with significantly decreased partial correlation were mainly observed in the ipsilesional supramarginal gyrus and superior temporal gyrus. Pearson's correlations revealed that the interhemispheric asymmetry change significantly correlated with the training effect as well as the integrity of M1-M1 anatomical connection. In summary, our study suggested that multiple functional brain regions not limited to motor areas were involved during the recovery process from multimodality perspective. The correlation analyses suggested the essential role of interhemispheric interaction in motor rehabilitation. Besides, the underlying structural substrate of the bilateral M1-M1 connection might relate to the interhemispheric change. This study might give some insights in understanding the neuroplasticity induced by the integrated BCI-guided robot hand training intervention and further facilitate the design of therapies for chronic stroke patients.


Assuntos
Eletroencefalografia , Imageamento por Ressonância Magnética , Atividade Motora , Imagem Multimodal/métodos , Neuroimagem/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Adulto , Idoso , Doença Crônica , Dominância Cerebral , Feminino , Mãos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica , Robótica
11.
J Neuroeng Rehabil ; 18(1): 150, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635141

RESUMO

BACKGROUND: Falls are more prevalent in stroke survivors than age-matched healthy older adults because of their functional impairment. Rapid balance recovery reaction with adequate range-of-motion and fast response and movement time are crucial to minimize fall risk and prevent serious injurious falls when postural disturbances occur. A Kinect-based Rapid Movement Training (RMT) program was developed to provide real-time feedback to promote faster and larger arm reaching and leg stepping distances toward targets in 22 different directions. OBJECTIVE: To evaluate the effectiveness of the interactive RMT and Conventional Balance Training (CBT) on chronic stroke survivors' overall balance and balance recovery reaction. METHODS: In this assessor-blinded randomized controlled trial, chronic stroke survivors were randomized to receive twenty training sessions (60-min each) of either RMT or CBT. Pre- and post-training assessments included clinical tests, as well as kinematic measurements and electromyography during simulated forward fall through a "lean-and-release" perturbation system. RESULTS: Thirty participants were recruited (RMT = 16, CBT = 14). RMT led to significant improvement in balance control (Berg Balance Scale: pre = 49.13, post = 52.75; P = .001), gait control (Timed-Up-and-Go Test: pre = 14.66 s, post = 12.62 s; P = .011), and motor functions (Fugl-Meyer Assessment of Motor Recovery: pre = 60.63, post = 65.19; P = .015), which matched the effectiveness of CBT. Both groups preferred to use their non-paretic leg to take the initial step to restore stability, and their stepping leg's rectus femoris reacted significantly faster post-training (P = .036). CONCLUSION: The RMT was as effective as conventional balance training to provide beneficial effects on chronic stroke survivors' overall balance, motor function and improving balance recovery with faster muscle response. TRIAL REGISTRATION: The study was registered at Clinicaltrials.gov ( https://clinicaltrials.gov/ct2/show/NCT03183635 , NCT03183635) on 12 June 2017.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Acidentes por Quedas/prevenção & controle , Idoso , Humanos , Equilíbrio Postural , Acidente Vascular Cerebral/complicações , Estudos de Tempo e Movimento
12.
Med Image Anal ; 93: 103095, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38310678

RESUMO

Segmenting prostate from magnetic resonance imaging (MRI) is a critical procedure in prostate cancer staging and treatment planning. Considering the nature of labeled data scarcity for medical images, semi-supervised learning (SSL) becomes an appealing solution since it can simultaneously exploit limited labeled data and a large amount of unlabeled data. However, SSL relies on the assumption that the unlabeled images are abundant, which may not be satisfied when the local institute has limited image collection capabilities. An intuitive solution is to seek support from other centers to enrich the unlabeled image pool. However, this further introduces data heterogeneity, which can impede SSL that works under identical data distribution with certain model assumptions. Aiming at this under-explored yet valuable scenario, in this work, we propose a separated collaborative learning (SCL) framework for semi-supervised prostate segmentation with multi-site unlabeled MRI data. Specifically, on top of the teacher-student framework, SCL exploits multi-site unlabeled data by: (i) Local learning, which advocates local distribution fitting, including the pseudo label learning that reinforces confirmation of low-entropy easy regions and the cyclic propagated real label learning that leverages class prototypes to regularize the distribution of intra-class features; (ii) External multi-site learning, which aims to robustly mine informative clues from external data, mainly including the local-support category mutual dependence learning, which takes the spirit that mutual information can effectively measure the amount of information shared by two variables even from different domains, and the stability learning under strong adversarial perturbations to enhance robustness to heterogeneity. Extensive experiments on prostate MRI data from six different clinical centers show that our method can effectively generalize SSL on multi-site unlabeled data and significantly outperform other semi-supervised segmentation methods. Besides, we validate the extensibility of our method on the multi-class cardiac MRI segmentation task with data from four different clinical centers.


Assuntos
Práticas Interdisciplinares , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Entropia , Imageamento por Ressonância Magnética
13.
Artigo em Inglês | MEDLINE | ID: mdl-38051622

RESUMO

EMG-driven robot hand training can facilitate motor recovery in chronic stroke patients by restoring the interhemispheric balance between motor networks. However, the underlying mechanisms of reorganization between interhemispheric regions remain unclear. This study investigated the effective connectivity (EC) between the ventral premotor cortex (PMv), supplementary motor area (SMA), and primary motor cortex (M1) using Dynamic Causal Modeling (DCM) during motor tasks with the paretic hand. Nineteen chronic stroke subjects underwent 20 sessions of EMG-driven robot hand training, and their Action Reach Arm Test (ARAT) showed significant improvement ( ß =3.56, [Formula: see text]). The improvement was correlated with the reduction of inhibitory coupling from the contralesional M1 to the ipsilesional M1 (r=0.58, p=0.014). An increase in the laterality index was only observed in homotopic M1, but not in the premotor area. Additionally, we identified an increase in resting-state functional connectivity (FC) between bilateral M1 ( ß =0.11, p=0.01). Inter-M1 FC demonstrated marginal positive relationships with ARAT scores (r=0.402, p=0.110), but its changes did not correlate with ARAT improvements. These findings suggest that the improvement of hand functions brought about by EMG-driven robot hand training was driven explicitly by task-specific reorganization of motor networks. Particularly, the restoration of interhemispheric balance was induced by a reduction in interhemispheric inhibition from the contralesional M1 during motor tasks of the paretic hand. This finding sheds light on the mechanistic understanding of interhemispheric balance and functional recovery induced by EMG-driven robot training.


Assuntos
Córtex Motor , Robótica , Acidente Vascular Cerebral , Humanos , Imageamento por Ressonância Magnética , Córtex Motor/fisiologia , Mãos
14.
Neurorehabil Neural Repair ; : 15459683241257519, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812378

RESUMO

BACKGROUND: Intensive task-oriented training has shown promise in enhancing distal motor function among patients with chronic stroke. A personalized electromyography (EMG)-driven soft robotic hand was developed to assist task-oriented object-manipulation training effectively. Objective. To compare the effectiveness of task-oriented training using the EMG-driven soft robotic hand. METHODS: A single-blinded, randomized controlled trial was conducted with 34 chronic stroke survivors. The subjects were randomly assigned to the Hand Task (HT) group (n = 17) or the control (CON) group (n = 17). The HT group received 45 minutes of task-oriented training by manipulating small objects with the robotic hand for 20 sessions, while the CON group received 45 minutes of hand-functional exercises without objects using the same robot. Fugl-Meyer assessment (FMA-UE), Action Research Arm Test (ARAT), Modified Ashworth Score (MAS), Box and Block test (BBT), Maximum Grip Strength, and active range of motion (AROM) of fingers were assessed at baseline, after intervention, and 3 months follow-up. The muscle co-contraction index (CI) was analyzed to evaluate the session-by-session variation of upper limb EMG patterns. RESULTS: The HT group showed more significant improvement in FMA-UE (wrist/hand, shoulder/elbow) compared to the CON group (P < .05). At 3-month follow-up, the HT group demonstrated significant improvements in FMA-UE, ARAT, BBT, MAS (finger), and AROMs (P < .05). The HT group exhibited a more significant decrease in muscle co-contractions compared to the CON group (P < .05). CONCLUSIONS: EMG-driven task-oriented training with the personalized soft robotic hand was a practical approach to improving motor function and muscle coordination. CLINICAL TRIAL REGISTRY NAME: Soft Robotic Hand System for Stroke Rehabilitation. CLINICAL TRIAL REGISTRATION-URL: https://clinicaltrials.gov/. UNIQUE IDENTIFIER: NCT03286309.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38083192

RESUMO

Recent semi-supervised learning approaches appealingly advance medical image segmentation for their effectiveness in alleviating the need for a large amount of expert-demanding annotations. However, most of them have two limitations: (i) neglect of the intra-class variation caused by different patients and scanning protocols, which makes the pixel-level label propagation difficult; (ii) non-selective stability learning (a.k.a., consistency regularization), resulting in distraction by the redundant easy regions. To address these, in this work, we propose a novel synergistic label-stability learning (SLSL) framework for semi-supervised medical image segmentation. Specifically, our method is built upon the teacher-student framework. Then, the label learning process includes the typical pseudo label learning that reinforces confirmation of well-classified easy regions and the cyclic real label learning that takes advantage of real labels and class prototypes to regularize the distribution of intra-class features from unlabeled data to facilitate label propagation. In addition, the difficulty-selective stability learning aims to regularize the perturbed stability only at the high-entropy (can be regarded as difficult) regions, rather than being distracted by the less-informative easy regions. Extensive experiments on left atrium segmentation from MRI show that our method can effectively exploit the unlabeled data and outperform other semi-supervised medical image segmentation methods.Clinical relevance- The proposed method can help develop a high-performance automatic left atrium segmentation model for treating atrial fibrillation under limited expert-demanding annotation budgets.


Assuntos
Fibrilação Atrial , Átrios do Coração , Humanos , Átrios do Coração/diagnóstico por imagem , Entropia , Aprendizado de Máquina Supervisionado
16.
Comput Biol Med ; 162: 107061, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37263152

RESUMO

Unsupervised domain adaptation (UDA), which is used to alleviate the domain shift between the source domain and target domain, has attracted substantial research interest. Previous studies have proposed effective UDA methods which require both labeled source data and unlabeled target data to achieve desirable distribution alignment. However, due to privacy concerns, the vendor side often can only trade the pretrained source model without providing the source data to the targeted client, leading to failed adaptation by classical UDA techniques. To address this issue, in this paper, a novel Superpixel-guided Class-level Denoised self-training framework (SCD) is proposed, aiming at effectively adapting the pretrained source model to the target domain in the absence of source data. Since the source data is unavailable, the model can only be trained on the target domain with the pseudo labels obtained from the pretrained source model. However, due to domain shift, the predictions obtained by the source model on the target domain are noisy. Considering this, we propose three mutual-reinforcing components tailored to our self-training framework: (i) an adaptive class-aware thresholding strategy for more balanced pseudo label generation, (ii) a masked superpixel-guided clustering method for generating multiple content-adaptive and spatial-adaptive feature centroids that enhance the discriminability of final prototypes for effective prototypical label denoising, and (iii) adaptive learning schemes for suspected noisy-labeled and correct-labeled pixels to effectively utilize the valuable information available. Comprehensive experiments on multi-site fundus image segmentation demonstrate the superior performance of our approach and the effectiveness of each component.


Assuntos
Aprendizagem , Humanos , Análise por Conglomerados , Fundo de Olho
17.
Front Neurosci ; 17: 1241772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146541

RESUMO

Hand rehabilitation in chronic stroke remains challenging, and finding markers that could reflect motor function would help to understand and evaluate the therapy and recovery. The present study explored whether brain oscillations in different electroencephalogram (EEG) bands could indicate the motor status and recovery induced by action observation-driven brain-computer interface (AO-BCI) robotic therapy in chronic stroke. The neurophysiological data of 16 chronic stroke patients who received 20-session BCI hand training is the basis of the study presented here. Resting-state EEG was recorded during the observation of non-biological movements, while task-stage EEG was recorded during the observation of biological movements in training. The motor performance was evaluated using the Action Research Arm Test (ARAT) and upper extremity Fugl-Meyer Assessment (FMA), and significant improvements (p < 0.05) on both scales were found in patients after the intervention. Averaged EEG band power in the affected hemisphere presented negative correlations with scales pre-training; however, no significant correlations (p > 0.01) were found both in the pre-training and post-training stages. After comparing the variation of oscillations over training, we found patients with good and poor recovery presented different trends in delta, low-beta, and high-beta variations, and only patients with good recovery presented significant changes in EEG band power after training (delta band, p < 0.01). Importantly, motor improvements in ARAT correlate significantly with task EEG power changes (low-beta, c.c = 0.71, p = 0.005; high-beta, c.c = 0.71, p = 0.004) and task/rest EEG power ratio changes (delta, c.c = -0.738, p = 0.003; low-beta, c.c = 0.67, p = 0.009; high-beta, c.c = 0.839, p = 0.000). These results suggest that, in chronic stroke, EEG band power may not be a good indicator of motor status. However, ipsilesional oscillation changes in the delta and beta bands provide potential biomarkers related to the therapeutic-induced improvement of motor function in effective BCI intervention, which may be useful in understanding the brain plasticity changes and contribute to evaluating therapy and recovery in chronic-stage motor rehabilitation.

18.
Med Image Anal ; 88: 102880, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37413792

RESUMO

Semi-supervised learning has greatly advanced medical image segmentation since it effectively alleviates the need of acquiring abundant annotations from experts, wherein the mean-teacher model, known as a milestone of perturbed consistency learning, commonly serves as a standard and simple baseline. Inherently, learning from consistency can be regarded as learning from stability under perturbations. Recent improvement leans toward more complex consistency learning frameworks, yet, little attention is paid to the consistency target selection. Considering that the ambiguous regions from unlabeled data contain more informative complementary clues, in this paper, we improve the mean-teacher model to a novel ambiguity-consensus mean-teacher (AC-MT) model. Particularly, we comprehensively introduce and benchmark a family of plug-and-play strategies for ambiguous target selection from the perspectives of entropy, model uncertainty and label noise self-identification, respectively. Then, the estimated ambiguity map is incorporated into the consistency loss to encourage consensus between the two models' predictions in these informative regions. In essence, our AC-MT aims to find out the most worthwhile voxel-wise targets from the unlabeled data, and the model especially learns from the perturbed stability of these informative regions. The proposed methods are extensively evaluated on left atrium segmentation and brain tumor segmentation. Encouragingly, our strategies bring substantial improvement over recent state-of-the-art methods. The ablation study further demonstrates our hypothesis and shows impressive results under various extreme annotation conditions.


Assuntos
Benchmarking , Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Consenso , Entropia , Átrios do Coração , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por Computador
19.
Clin EEG Neurosci ; 54(5): 534-548, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35068216

RESUMO

Objective. To measure the EEG signals of the people with chronic stroke in eyes-closed and eyes-open condition and study their relationship with the cognitive function and mental wellbeing. Methods. The investigators would conduct cognitive and mental wellbeing tests on recruited subjects. Their EEG signal was acquired by the 16-channel EEG system. The absolute power under different frequency bands and EEG indices (delta alpha ratio and pairwise derived brain symmetry index) in different eye conditions was calculated. Pearson's correlation was conducted to investigate the association between the clinical tests and the EEG index. Results. 32 subjects were recruited for the study. There was a significant correlation between the pairwise derived brain symmetry index (pdBSI) in eyes-open condition with the Stroop Test (p = .002), Paced Auditory Serial Addition Test-3 s (p = .008)/2 s (p = .002) and WHO-5 well-being scale (p = .023). Conclusions. There is a significant correlation between the brain symmetry index and the cognitive and wellbeing assessment. Brain symmetry index over the delta frequency has been found to be the most useful parameter relating to the clinical score.Significance:It is recommended to use EEG as an adjunctive neuropsychological assessment in clinics for people with chronic stroke, especially for clients who could not undertake conventional assessments (eg aphasia, attention problem).Highlights: There is a significant correlation between the EEG index and the clinical neuropsychological assessmentPairwise Derived Brain Symmetry index in delta frequency range correlated with most of the neuropsychological outcome.It is feasible for us to adopt EEG as an adjunctive assessment in clinical settings.


Assuntos
Eletroencefalografia , Testes Neuropsicológicos , Acidente Vascular Cerebral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Crônica , Cognição , Olho , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/psicologia
20.
Neurosci Res ; 186: 21-32, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36220454

RESUMO

The neuromodulation effect of anodal tDCS is not thoroughly studied, and the heterogeneous profile of stroke individuals with brain lesions would further complicate the stimulation outcomes. This study aimed to investigate the functional changes in sensorimotor areas induced by anodal tDCS and whether individual electric field could predict the functional outcomes. Twenty-five chronic stroke survivors were recruited and divided into tDCS group (n = 12) and sham group (n = 13). Increased functional connectivity (FC) within the surrounding areas of ipsilesional primary motor cortex (M1) was only observed after anodal tDCS. Averaged FC among the ipsilesional sensorimotor regions was observed to be increased after anodal tDCS (t(11) = 2.57, p = 0.026), but not after sham tDCS (t(12) = 0.69, p = 0.50). Partial least square analysis identified positive correlations between electric field (EF) strength normal to the ipsilesional M1 surface and individual FC changes in tDCS group (r = 0.84, p < 0.001) but not in sham group (r = 0.21, p = 0.5). Our results indicated anodal tDCS facilitates the FC within the ipsilesional sensorimotor network in chronic stroke subjects, and individual electric field predicts the functional outcomes.


Assuntos
Córtex Motor , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Córtex Motor/fisiologia , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/complicações , Estimulação Transcraniana por Corrente Contínua/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA