Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 44(19): 9142-9152, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27369377

RESUMO

Nucleosome assembly in vivo requires assembly factors, such as histone chaperones, to bind to histones and mediate their deposition onto DNA. In yeast, the essential histone chaperone FACT (FAcilitates Chromatin Transcription) functions in nucleosome assembly and H2A-H2B deposition during transcription elongation and DNA replication. Recent studies have identified candidate histone residues that mediate FACT binding to histones, but it is not known which histone residues are important for FACT to deposit histones onto DNA during nucleosome assembly. In this study, we report that the histone H2B repression (HBR) domain within the H2B N-terminal tail is important for histone deposition by FACT. Deletion of the HBR domain causes significant defects in histone occupancy in the yeast genome, particularly at HBR-repressed genes, and a pronounced increase in H2A-H2B dimers that remain bound to FACT in vivo Moreover, the HBR domain is required for purified FACT to efficiently assemble recombinant nucleosomes in vitro We propose that the interaction between the highly basic HBR domain and DNA plays an important role in stabilizing the nascent nucleosome during the process of histone H2A-H2B deposition by FACT.


Assuntos
Histonas/química , Nucleossomos/química , Domínios e Motivos de Interação entre Proteínas , Animais , Sobrevivência Celular/genética , DNA/química , DNA/metabolismo , DNA Ribossômico/química , DNA Ribossômico/metabolismo , Regulação da Expressão Gênica , Genoma , Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleossomos/metabolismo , Ligação Proteica , RNA Ribossômico 5S/genética , Proteínas Recombinantes , Deleção de Sequência
2.
Biol Reprod ; 95(4): 81, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27488029

RESUMO

Retinoic acid (RA), the active metabolite of vitamin A, is known to be required for the differentiation of spermatogonia. The first round of spermatogenesis initiates in response to RA and occurs in patches along the length of the seminiferous tubule. However, very little is known about the individual differentiating spermatogonial populations and their progression through the cell cycle due to the heterogeneous nature of the onset of spermatogenesis. In this study, we utilized WIN 18,446 and RA as tools to generate testes enriched with different populations of spermatogonia to further investigate 1) the undifferentiated to differentiating spermatogonial transition, 2) the progression of the differentiating spermatogonia through the cell cycle, and 3) Sertoli cell number in response to altered RA levels. WIN 18,446/RA-treated neonatal mice were used to determine when synchronous S phases occurred in the differentiating spermatogonial population following treatment. Five differentiating spermatogonial S phase windows were identified between spermatogonial differentiation and formation of preleptotene spermatocytes. In addition, a slight increase in Sertoli cell number was observed following RA treatment, possibly implicating a role for RA in Sertoli cell cycle progression. This study has enhanced our understanding of the spermatogonial populations present in the neonatal testis during the onset of spermatogenesis by mapping the cell cycle kinetics of both the undifferentiated and the differentiating spermatogonial populations and identifying the precise timing of when specific individual differentiating spermatogonial populations are enriched within the testis following synchrony, thus providing an essential tool for further study of the differentiating spermatogonia.


Assuntos
Espermatogênese/efeitos dos fármacos , Espermatogônias/efeitos dos fármacos , Tretinoína/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Diaminas/farmacologia , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Túbulos Seminíferos/metabolismo , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos , Transdução de Sinais , Espermatogênese/fisiologia , Espermatogônias/citologia , Espermatogônias/fisiologia , Testículo/citologia , Testículo/efeitos dos fármacos , Testículo/fisiologia , Tretinoína/fisiologia
3.
J Mol Biol ; 342(1): 247-60, 2004 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-15313621

RESUMO

The equilibrium stabilities to guanidinium chloride (GdmCl)-induced denaturation and kinetic folding mechanisms have been characterized for three archael histones: hFoB from the mesophile Methanobacterium formicicum; hMfB from the thermophile Methanothermus fervidus; and hPyA1 from the hyperthermophile Pyrococcus strain GB-3a. These histones are homodimers of 67 to 69 residues per monomer. The equilibrium unfolding transitions, as measured by far-UV circular dichroism (CD) are highly reversible, two-state processes. The mesophilic hFoB is very unstable and requires approximately 1 M trimethyl-amine-N-oxide (TMAO) to completely populate the native state. The thermophilic histones are more stable, with deltaG degrees (H2O) values of 14 and 16 kcal mol(-1) for hMfB and hPyA1, respectively. The kinetic folding of hFoB and hPyA1 are two-state processes, with no detectable transient kinetic intermediates. For hMfB, there is significant development of CD signal in the stopped-flow dead time, indicative of the formation of a monomeric intermediate, which then folds/associates in a single, second-order step to form the native dimer. While the equilibrium stability to chemical denaturation correlates very well with host growth temperature, there is no simple relationship between folding rates and stability for the archael histones. In the absence of denaturant, the log of the unfolding rates correlate with equilibrium stability. The folding/association of the moderately stable hMfB is the most rapid, with a rate constant in the absence of GdmCl of 3 x 10(6) M(-1) s(-1), compared to 9 x 10(5) M(-1) s(-1) for the more stable hPyA1. It appears that the formation of the hMfB burst-phase monomeric ensemble serves to enhance folding efficiency, rather than act as a kinetic trap. The folding mechanism of the archael histones is compared to the folding of other intertwined, segment-swapped, alpha-helical, DNA-binding dimers (ISSADD), including the eukaryotic heterodimeric histones, which fold more rapidly. The importance of monomeric and dimeric kinetic intermediates in accelerating ISSADD folding reactions is discussed.


Assuntos
Proteínas Arqueais/química , Histonas/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Arqueais/genética , Guanidina/química , Histonas/genética , Desnaturação Proteica , Termodinâmica
4.
J Mol Biol ; 335(4): 1065-81, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14698300

RESUMO

FIS, the factor for inversion stimulation, from Escherichia coli and other enteric bacteria, is an interwined alpha-helical homodimer. Size exclusion chromatography and static light scattering measurements demonstrated that FIS is predominately a stable dimer at the concentrations (1-10 microM monomer) and buffer conditions employed in this study. The folding and unfolding of FIS were studied with both equilibrium and kinetic methods by circular dichroism using urea and guanidinium chloride (GdmCl) as the perturbants. The equilibrium folding is reversible and well-described by a two-state folding model, with stabilities at 10 degrees C of 15.2 kcal mol(-1) in urea and 13.5 kcal mol(-1) in GdmCl. The kinetic data are consistent with a two-step folding reaction where the two unfolded monomers associate to a dimeric intermediate within the mixing time for the stopped-flow instrument (<5 ms), and a slower, subsequent folding of the dimeric intermediate to the native dimer. Fits of the burst phase amplitudes as a function of denaturant showed that the free energy for the formation of the dimeric intermediate constitutes the majority of the stability of the folding (9.6 kcal mol(-1) in urea and 10.5 kcal mol(-1) in GdmCl). Folding-to-unfolding double jump kinetic experiments were also performed to monitor the formation of native dimer as a function of folding delay times. The data here demonstrate that the dimeric intermediate is obligatory and on-pathway. The folding mechanism of FIS, when compared to other intertwined, alpha-helical, homodimers, suggests that a transient kinetic dimeric intermediate may be a common feature of the folding of intertwined, segment-swapped, alpha-helical dimers.


Assuntos
Fator Proteico para Inversão de Estimulação/química , Fator Proteico para Inversão de Estimulação/metabolismo , Dobramento de Proteína , Dicroísmo Circular , Dimerização , Guanidina/farmacologia , Cinética , Modelos Moleculares , Peso Molecular , Desnaturação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Termodinâmica , Ureia/farmacologia
5.
Protein Sci ; 20(12): 2060-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21953551

RESUMO

The goal of this study was to examine fibril formation by the heterodimeric eukaryotic histones (H2A-H2B and H3-H4) and homodimeric archaeal histones (hMfB and hPyA1). The histone fold dimerization motif is an obligatorily domain-swapped structure comprised of two fused helix:ß-loop:helix motifs. Domain swapping has been proposed as a mechanism for the evolution of protein oligomers as well as a means to form precursors in the formation of amyloid-like fibrils. Despite sharing a common fold, the eukaryotic histones of the core nucleosome and archaeal histones fold by kinetic mechanisms of differing complexity with transient population of partially folded monomeric and/or dimeric species. No relationship was apparent between fibrillation propensity and equilibrium stability or population of kinetic intermediates. Only H3 and H4, as isolated monomers and as a heterodimer, readily formed fibrils at room temperature, and this propensity correlates with the significantly lower solubility of these polypeptides. The fibrils were characterized by ThT fluorescence, FTIR, and far-UV CD spectroscopies and electron microscopy. The helical histone fold comprises the protease-resistant core of the fibrils, with little or no protease protection of the poorly structured N-terminal tails. The highly charged tails inhibit fibrillation through electrostatic repulsion. Kinetic studies indicate that H3 and H4 form a co-fibril, with simultaneous incorporation of both histones. The potential impact of H3 and H4 fibrillation on the cytotoxicity of extracellular histones and α-synuclein-mediated neurotoxicity and fibrillation is considered.


Assuntos
Amiloide/metabolismo , Proteínas Arqueais/metabolismo , Histonas/metabolismo , Amiloide/química , Animais , Proteínas Arqueais/química , Histonas/química , Modelos Moleculares , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Solubilidade , Eletricidade Estática , Xenopus laevis
6.
J Mol Biol ; 376(5): 1451-62, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18207162

RESUMO

Salts affect protein stability by multiple mechanisms (e.g., the Hofmeister effect, preferential hydration, electrostatic effects and weak ion binding). These mechanisms can affect the stability of both the native state and the unfolded state. Previous equilibrium stability studies demonstrated that KCl stabilizes dihydrofolate reductases (DHFRs) from Escherichia coli (ecDHFR, E. coli DHFR) and Haloferax volcanii (hvDHFR1, H. volcanii DHFR encoded by the hdrA gene) with similar efficacies, despite adaptation to disparate physiological ionic strengths (0.2 M versus 2 M). Kinetic studies can provide insights on whether equilibrium effects reflect native state stabilization or unfolded state destabilization. Similar kinetic mechanisms describe the folding of urea-denatured ecDHFR and hvDHFR1: a 5-ms stopped-flow burst-phase species that folds to the native state through two sequential intermediates with relaxation times of 0.1-3 s and 25-100 s. The latter kinetic step is very similar to that observed for the refolding of hvDHFR1 from low ionic strength. The unfolding of hvDHFR1 at low ionic strength is relatively slow, suggesting kinetic stabilization as observed for some thermophilic enzymes. Increased KCl concentrations slow the urea-induced unfolding of ecDHFR and hvDHFR1, but much less than expected from equilibrium studies. Unfolding rates extrapolated to 0 M denaturant, k(unf)(H(2)O), are relatively independent of ionic strength, demonstrating that the KCl-induced stabilization of ecDHFR and hvDHFR1 results predominantly from destabilization of the unfolded state. This supports the hypothesis from previous equilibrium studies that haloadaptation harnesses the effects of elevated salt concentrations on the properties of the aqueous solvent to enhance protein stability.


Assuntos
Escherichia coli/enzimologia , Haloferax volcanii/enzimologia , Cloreto de Potássio/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Cinética , Dobramento de Proteína , Tetra-Hidrofolato Desidrogenase/metabolismo , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA