Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 48(10): 839-848, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574371

RESUMO

Core promoters are sites where transcriptional regulatory inputs of a gene are integrated to direct the assembly of the preinitiation complex (PIC) and RNA polymerase II (Pol II) transcription output. Until now, core promoter functions have been investigated by distinct methods, including Pol II transcription initiation site mappings and structural characterization of PICs on distinct promoters. Here, we bring together these previously unconnected observations and hypothesize how, on metazoan TATA promoters, the precisely structured building up of transcription factor (TF) IID-based PICs results in sharp transcription start site (TSS) selection; or, in contrast, how the less strictly controlled positioning of the TATA-less promoter DNA relative to TFIID-core PIC components results in alternative broad TSS selections by Pol II.


Assuntos
Fator de Transcrição TFIID , Transcrição Gênica , Animais , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , TATA Box , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo
2.
Mol Cell ; 72(1): 10-17, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290147

RESUMO

Transcript buffering involves reciprocal adjustments between overall rates in mRNA synthesis and degradation to maintain similar cellular concentrations of mRNAs. This phenomenon was first discovered in yeast and encompasses coordination between the nuclear and cytoplasmic compartments. Transcript buffering was revealed by novel methods for pulse labeling of RNA to determine in vivo synthesis and degradation rates. In this Perspective, we discuss the current knowledge of transcript buffering. Emphasis is placed on the future challenges to determine the nature and directionality of the buffering signals, the generality of transcript buffering beyond yeast, and the molecular mechanisms responsible for this balancing.


Assuntos
Estabilidade de RNA/genética , RNA Mensageiro/biossíntese , Transcrição Gênica , Núcleo Celular/genética , Citoplasma/genética , Capuzes de RNA/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
3.
Brain ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753057

RESUMO

Deubiquitination is critical for the proper functioning of numerous biological pathways such as DNA repair, cell cycle progression, transcription, signal transduction, and autophagy. Accordingly, pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders (ND) and congenital abnormalities. ATXN7L3 is a component of the DUB module of the SAGA complex, and two other related DUB modules, and serves as an obligate adaptor protein of 3 ubiquitin-specific proteases (USP22, USP27X or USP51). Through exome sequencing and GeneMatching, we identified nine individuals with heterozygous variants in ATXN7L3. The core phenotype included global motor and language developmental delay, hypotonia, and distinctive facial characteristics including hypertelorism, epicanthal folds, blepharoptosis, a small nose and mouth, and low-set posteriorly rotated ears. In order to assess pathogenicity, we investigated the effects of a recurrent nonsense variant [c.340C>T; p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired, as indicated by an increase in histone H2Bub1 levels. This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality. In conclusion, we present clinical information and biochemical characterization supporting ATXN7L3 variants in the pathogenesis of a rare syndromic ND.

4.
Mol Cell ; 68(1): 118-129.e5, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28918900

RESUMO

Previous studies suggested that expression of most yeast mRNAs is dominated by either transcription factor TFIID or SAGA. We re-examined the role of TFIID by rapid depletion of S. cerevisiae TFIID subunits and measurement of changes in nascent transcription. We find that transcription of nearly all mRNAs is strongly dependent on TFIID function. Degron-dependent depletion of Taf1, Taf2, Taf7, Taf11, and Taf13 showed similar transcription decreases for genes in the Taf1-depleted, Taf1-enriched, TATA-containing, and TATA-less gene classes. The magnitude of TFIID dependence varies with growth conditions, although this variation is similar genome-wide. Many studies have suggested differences in gene-regulatory mechanisms between TATA and TATA-less genes, and these differences have been attributed in part to differential dependence on SAGA or TFIID. Our work indicates that TFIID participates in expression of nearly all yeast mRNAs and that differences in regulation between these two gene categories is due to other properties.


Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/genética , Transativadores/química , Transcrição Gênica , Deleção de Genes , Regiões Promotoras Genéticas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase II/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/deficiência , Fatores Associados à Proteína de Ligação a TATA/genética , Proteína de Ligação a TATA-Box/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fator de Transcrição TFIID/deficiência , Fator de Transcrição TFIID/genética
5.
Mol Cell ; 68(1): 130-143.e5, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28918903

RESUMO

Prior studies suggested that SAGA and TFIID are alternative factors that promote RNA polymerase II transcription, with about 10% of genes in S. cerevisiae dependent on SAGA. We reassessed the role of SAGA by mapping its genome-wide location and role in global transcription in budding yeast. We find that SAGA maps to the UAS elements of most genes, overlapping with Mediator binding and irrespective of previous designations of SAGA- or TFIID-dominated genes. Disruption of SAGA through mutation or rapid subunit depletion reduces transcription from nearly all genes, measured by newly synthesized RNA. We also find that the acetyltransferase Gcn5 synergizes with Spt3 to promote global transcription and that Spt3 functions to stimulate TBP recruitment at all tested genes. Our data demonstrate that SAGA acts as a general cofactor required for essentially all RNA polymerase II transcription and is not consistent with the previous classification of SAGA- and TFIID-dominated genes.


Assuntos
Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/genética , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/genética , Transativadores/genética , Fatores de Transcrição/genética , Deleção de Genes , Histona Acetiltransferases/metabolismo , Regiões Promotoras Genéticas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase II/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Nucleic Acids Res ; 50(14): 7972-7990, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35871303

RESUMO

Coactivator complexes regulate chromatin accessibility and transcription. SAGA (Spt-Ada-Gcn5 Acetyltransferase) is an evolutionary conserved coactivator complex. The core module scaffolds the entire SAGA complex and adopts a histone octamer-like structure, which consists of six histone-fold domain (HFD)-containing proteins forming three histone-fold (HF) pairs, to which the double HFD-containing SUPT3H adds one HF pair. Spt3, the yeast ortholog of SUPT3H, interacts genetically and biochemically with the TATA binding protein (TBP) and contributes to global RNA polymerase II (Pol II) transcription. Here we demonstrate that (i) SAGA purified from human U2OS or mouse embryonic stem cells (mESC) can assemble without SUPT3H, (ii) SUPT3H is not essential for mESC survival, but required for their growth and self-renewal, and (iii) the loss of SUPT3H from mammalian cells affects the transcription of only a specific subset of genes. Accordingly, in the absence of SUPT3H no major change in TBP accumulation at gene promoters was observed. Thus, SUPT3H is not required for the assembly of SAGA, TBP recruitment, or overall Pol II transcription, but plays a role in mESC growth and self-renewal. Our data further suggest that yeast and mammalian SAGA complexes contribute to transcription regulation by distinct mechanisms.


Assuntos
RNA Polimerase II , Transativadores , Fatores de Transcrição , Animais , Proteínas de Ligação a DNA/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
7.
J Biol Chem ; 297(5): 101288, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634302

RESUMO

The human general transcription factor TFIID is composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). In eukaryotic cells, TFIID is thought to nucleate RNA polymerase II (Pol II) preinitiation complex formation on all protein coding gene promoters and thus, be crucial for Pol II transcription. TFIID is composed of three lobes, named A, B, and C. A 5TAF core complex can be assembled in vitro constituting a building block for the further assembly of either lobe A or B in TFIID. Structural studies showed that TAF8 forms a histone fold pair with TAF10 in lobe B and participates in connecting lobe B to lobe C. To better understand the role of TAF8 in TFIID, we have investigated the requirement of the different regions of TAF8 for the in vitro assembly of lobe B and C and the importance of certain TAF8 regions for mouse embryonic stem cell (ESC) viability. We have identified a region of TAF8 distinct from the histone fold domain important for assembling with the 5TAF core complex in lobe B. We also delineated four more regions of TAF8 each individually required for interacting with TAF2 in lobe C. Moreover, CRISPR/Cas9-mediated gene editing indicated that the 5TAF core-interacting TAF8 domain and the proline-rich domain of TAF8 that interacts with TAF2 are both required for mouse embryonic stem cell survival. Thus, our study defines distinct TAF8 regions involved in connecting TFIID lobe B to lobe C that appear crucial for TFIID function and consequent ESC survival.


Assuntos
Células-Tronco Embrionárias Murinas/metabolismo , Dobramento de Proteína , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Humanos , Camundongos , Domínios Proteicos , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
8.
Genes Dev ; 28(18): 1999-2012, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25228644

RESUMO

The SAGA (Spt-Ada-Gcn5 acetyltransferase) coactivator complex contains distinct chromatin-modifying activities and is recruited by DNA-bound activators to regulate the expression of a subset of genes. Surprisingly, recent studies revealed little overlap between genome-wide SAGA-binding profiles and changes in gene expression upon depletion of subunits of the complex. As indicators of SAGA recruitment on chromatin, we monitored in yeast and human cells the genome-wide distribution of histone H3K9 acetylation and H2B ubiquitination, which are respectively deposited or removed by SAGA. Changes in these modifications after inactivation of the corresponding enzyme revealed that SAGA acetylates the promoters and deubiquitinates the transcribed region of all expressed genes. In agreement with this broad distribution, we show that SAGA plays a critical role for RNA polymerase II recruitment at all expressed genes. In addition, through quantification of newly synthesized RNA, we demonstrated that SAGA inactivation induced a strong decrease of mRNA synthesis at all tested genes. Analysis of the SAGA deubiquitination activity further revealed that SAGA acts on the whole transcribed genome in a very fast manner, indicating a highly dynamic association of the complex with chromatin. Thus, our study uncovers a new function for SAGA as a bone fide cofactor for all RNA polymerase II transcription.


Assuntos
Regulação Enzimológica da Expressão Gênica/genética , Regulação da Expressão Gênica , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Acetilação , Animais , Perfilação da Expressão Gênica , Genoma , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Ubiquitinação
9.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806465

RESUMO

Ubiquitin (ub) is a small, highly conserved protein widely expressed in eukaryotic cells. Ubiquitination is a post-translational modification catalyzed by enzymes that activate, conjugate, and ligate ub to proteins. Substrates can be modified either by addition of a single ubiquitin molecule (monoubiquitination), or by conjugation of several ubs (polyubiquitination). Monoubiquitination acts as a signaling mark to control diverse biological processes. The cellular and spatial distribution of ub is determined by the opposing activities of ub ligase enzymes, and deubiquitinases (DUBs), which remove ub from proteins to generate free ub. In mammalian cells, 1-2% of total histone H2B is monoubiquitinated. The SAGA (Spt Ada Gcn5 Acetyl-transferase) is a transcriptional coactivator and its DUB module removes ub from H2Bub1. The mammalian SAGA DUB module has four subunits, ATXN7, ATXN7L3, USP22, and ENY2. Atxn7l3-/- mouse embryos, lacking DUB activity, have a five-fold increase in H2Bub1 retention, and die at mid-gestation. Interestingly, embryos lacking the ub encoding gene, Ubc, have a similar phenotype. Here we provide a current overview of data suggesting that H2Bub1 retention on the chromatin in Atxn7l3-/- embryos may lead to an imbalance in free ub distribution. Thus, we speculate that ATXN7L3-containing DUBs impact the free cellular ub pool during development.


Assuntos
Histonas , Ubiquitina , Animais , Desenvolvimento Embrionário/genética , Histonas/genética , Histonas/metabolismo , Mamíferos/metabolismo , Camundongos , Processamento de Proteína Pós-Traducional , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação
10.
Trends Biochem Sci ; 42(11): 850-861, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28964624

RESUMO

Transcription initiation is a major regulatory step in eukaryotic gene expression. Co-activators establish transcriptionally competent promoter architectures and chromatin signatures to allow the formation of the pre-initiation complex (PIC), comprising RNA polymerase II (Pol II) and general transcription factors (GTFs). Many GTFs and co-activators are multisubunit complexes, in which individual components are organized into functional modules carrying specific activities. Recent advances in affinity purification and mass spectrometry analyses have revealed that these complexes often share functional modules, rather than containing unique components. This observation appears remarkably prevalent for chromatin-modifying and remodeling complexes. Here, we use the modular organization of the evolutionary conserved Spt-Ada-Gcn5 acetyltransferase (SAGA) complex as a paradigm to illustrate how co-activators share and combine a relatively limited set of functional tools.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo
11.
EMBO J ; 36(18): 2710-2725, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28724529

RESUMO

SAGA and ATAC are two distinct chromatin modifying co-activator complexes with distinct enzymatic activities involved in RNA polymerase II (Pol II) transcription regulation. To investigate the mobility of co-activator complexes and general transcription factors in live-cell nuclei, we performed imaging experiments based on photobleaching. SAGA and ATAC, but also two general transcription factors (TFIID and TFIIB), were highly dynamic, exhibiting mainly transient associations with chromatin, contrary to Pol II, which formed more stable chromatin interactions. Fluorescence correlation spectroscopy analyses revealed that the mobile pool of the two co-activators, as well as that of TFIID and TFIIB, can be subdivided into "fast" (free) and "slow" (chromatin-interacting) populations. Inhibiting transcription elongation decreased H3K4 trimethylation and reduced the "slow" population of SAGA, ATAC, TFIIB and TFIID In addition, inhibiting histone H3K4 trimethylation also reduced the "slow" populations of SAGA and ATAC Thus, our results demonstrate that in the nuclei of live cells the equilibrium between fast and slow population of SAGA or ATAC complexes is regulated by active transcription via changes in the abundance of H3K4me3 on chromatin.


Assuntos
Núcleo Celular/enzimologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Linhagem Celular , Cromatina/metabolismo , Humanos , Imagem Óptica
12.
Biochem Soc Trans ; 49(5): 2051-2062, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415300

RESUMO

In somatic cells, RNA polymerase II (Pol II) transcription initiation starts by the binding of the general transcription factor TFIID, containing the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs), to core promoters. However, in growing oocytes active Pol II transcription is TFIID/TBP-independent, as during oocyte growth TBP is replaced by its vertebrate-specific paralog TBPL2. TBPL2 does not interact with TAFs, but stably associates with TFIIA. The maternal transcriptome is the population of mRNAs produced and stored in the cytoplasm of growing oocytes. After fertilization, maternal mRNAs are inherited by the zygote from the oocyte. As transcription becomes silent after oocyte growth, these mRNAs are the sole source for active protein translation. They will participate to complete the protein pool required for oocyte terminal differentiation, fertilization and initiation of early development, until reactivation of transcription in the embryo, called zygotic genome activation (ZGA). All these events are controlled by an important reshaping of the maternal transcriptome. This procedure combines cytoplasmic readenylation of stored transcripts, allowing their translation, and different waves of mRNA degradation by deadenylation coupled to decapping, to eliminate transcripts coding for proteins that are no longer required. The reshaping ends after ZGA with an almost total clearance of the maternal transcripts. In the past, the murine maternal transcriptome has received little attention but recent progresses have brought new insights into the regulation of maternal mRNA dynamics in the mouse. This review will address past and recent data on the mechanisms associated with maternal transcriptome dynamic in the mouse.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética , Animais , Feminino , Camundongos , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , Gravidez , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Estabilidade de RNA , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Transcrição Gênica , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
14.
Hum Mol Genet ; 27(12): 2171-2186, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29648665

RESUMO

The human general transcription factor TFIID is composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). In eukaryotic cells, TFIID is thought to nucleate RNA polymerase II (Pol II) preinitiation complex formation on all protein coding gene promoters and thus, be crucial for Pol II transcription. In a child with intellectual disability, mild microcephaly, corpus callosum agenesis and poor growth, we identified a homozygous splice-site mutation in TAF8 (NM_138572.2: c.781-1G > A). Our data indicate that the patient's mutation generates a frame shift and an unstable TAF8 mutant protein with an unrelated C-terminus. The mutant TAF8 protein could not be detected in extracts from the patient's fibroblasts, indicating a loss of TAF8 function and that the mutation is most likely causative. Moreover, our immunoprecipitation and proteomic analyses show that in patient cells only partial TAF complexes exist and that the formation of the canonical TFIID is impaired. In contrast, loss of TAF8 in mouse embryonic stem cells and blastocysts leads to cell death and to a global decrease in Pol II transcription. Astonishingly however, in human TAF8 patient cells, we could not detect any cellular phenotype, significant changes in genome-wide Pol II occupancy and pre-mRNA transcription. Thus, the disorganization of the essential holo-TFIID complex did not affect global Pol II transcription in the patient's fibroblasts. Our observations further suggest that partial TAF complexes, and/or an altered TFIID containing a mutated TAF8, could support human development and thus, the absence of holo-TFIID is less deleterious for transcription than originally predicted.


Assuntos
Deficiência Intelectual/genética , Microcefalia/genética , Fator de Transcrição TFIID/genética , Transcrição Gênica , Animais , Blastocisto/metabolismo , Morte Celular/genética , Modelos Animais de Doenças , Drosophila/genética , Homozigoto , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/fisiopatologia , Camundongos , Microcefalia/diagnóstico por imagem , Microcefalia/patologia , Células-Tronco Embrionárias Murinas/metabolismo , Mutação , RNA Polimerase II/genética
15.
Development ; 144(20): 3808-3818, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28893950

RESUMO

During development, tightly regulated gene expression programs control cell fate and patterning. A key regulatory step in eukaryotic transcription is the assembly of the pre-initiation complex (PIC) at promoters. PIC assembly has mainly been studied in vitro, and little is known about its composition during development. In vitro data suggest that TFIID is the general transcription factor that nucleates PIC formation at promoters. Here we show that TAF10, a subunit of TFIID and of the transcriptional co-activator SAGA, is required for the assembly of these complexes in the mouse embryo. We performed Taf10 conditional deletions during mesoderm development and show that Taf10 loss in the presomitic mesoderm (PSM) does not prevent cyclic gene transcription or PSM segmental patterning, whereas lateral plate differentiation is profoundly altered. During this period, global mRNA levels are unchanged in the PSM, with only a minor subset of genes dysregulated. Together, our data strongly suggest that the TAF10-containing canonical TFIID and SAGA complexes are dispensable for early paraxial mesoderm development, arguing against the generic role in transcription proposed for these fully assembled holo-complexes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transativadores/genética , Fator de Transcrição TFIID/genética , Transcrição Gênica , Animais , Padronização Corporal , Diferenciação Celular , Núcleo Celular/metabolismo , Deleção de Genes , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Domínios Proteicos , RNA Mensageiro/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Transativadores/metabolismo , Fator de Transcrição TFIID/metabolismo
16.
Genes Dev ; 26(8): 797-802, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22465951

RESUMO

The linker histone H1 is a key player in chromatin organization, yet our understanding of the regulation of H1 functions by post-translational modifications is very limited. We provide here the first functional characterization of H1 acetylation. We show that H1.4K34 acetylation (H1.4K34ac) is mediated by GCN5 and is preferentially enriched at promoters of active genes, where it stimulates transcription by increasing H1 mobility and recruiting a general transcription factor. H1.4K34ac is dynamic during spermatogenesis and marks undifferentiated cells such as induced pluripotent stem (iPS) cells and testicular germ cell tumors. We propose a model for H1.4K34ac as a novel regulator of chromatin function with a dual role in transcriptional activation.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Ativação Transcricional , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Sequência de Aminoácidos , Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases , Histonas/genética , Humanos , Lisina/genética , Masculino , Dados de Sequência Molecular , Células-Tronco Pluripotentes/metabolismo , Regiões Promotoras Genéticas , Seminoma/genética , Seminoma/metabolismo , Espermatogênese/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Fator de Transcrição TFIID/metabolismo , Sítio de Iniciação de Transcrição , Regulação para Cima
17.
Nature ; 493(7434): 699-702, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23292512

RESUMO

The initiation of gene transcription by RNA polymerase II is regulated by a plethora of proteins in human cells. The first general transcription factor to bind gene promoters is transcription factor IID (TFIID). TFIID triggers pre-initiation complex formation, functions as a coactivator by interacting with transcriptional activators and reads epigenetic marks. TFIID is a megadalton-sized multiprotein complex composed of TATA-box-binding protein (TBP) and 13 TBP-associated factors (TAFs). Despite its crucial role, the detailed architecture and assembly mechanism of TFIID remain elusive. Histone fold domains are prevalent in TAFs, and histone-like tetramer and octamer structures have been proposed in TFIID. A functional core-TFIID subcomplex was revealed in Drosophila nuclei, consisting of a subset of TAFs (TAF4, TAF5, TAF6, TAF9 and TAF12). These core subunits are thought to be present in two copies in holo-TFIID, in contrast to TBP and other TAFs that are present in a single copy, conveying a transition from symmetry to asymmetry in the TFIID assembly pathway. Here we present the structure of human core-TFIID determined by cryo-electron microscopy at 11.6 Å resolution. Our structure reveals a two-fold symmetric, interlaced architecture, with pronounced protrusions, that accommodates all conserved structural features of the TAFs including the histone folds. We further demonstrate that binding of one TAF8-TAF10 complex breaks the original symmetry of core-TFIID. We propose that the resulting asymmetric structure serves as a functional scaffold to nucleate holo-TFIID assembly, by accreting one copy each of the remaining TAFs and TBP.


Assuntos
Modelos Moleculares , Fator de Transcrição TFIID/química , Células Cultivadas , Microscopia Crioeletrônica , Células HeLa , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
18.
Mol Cell ; 44(6): 966-77, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22195969

RESUMO

We show that the time required to transcribe human genes larger than 800 kb spans more than one complete cell cycle, while their transcription speed equals that of smaller genes. Independently of their expression status, we find the long genes to replicate late. Regions of concomitant transcription and replication in late S phase exhibit DNA break hot spots known as common fragile sites (CFSs). This CFS instability depends on the expression of the underlying long genes. We show that RNA:DNA hybrids (R-loops) form at sites of transcription/replication collisions and that RNase H1 functions to suppress CFS instability. In summary, our results show that, on the longest human genes, collisions of the transcription machinery with a replication fork are inevitable, creating R-loops and consequent CFS formation. Functional replication machinery needs to be involved in the resolution of conflicts between transcription and replication machineries to ensure genomic stability.


Assuntos
Sítios Frágeis do Cromossomo/genética , Replicação do DNA , Genes/genética , Instabilidade Genômica/genética , Transcrição Gênica , Ciclo Celular/genética , DNA/genética , DNA/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Humanos , RNA/genética , RNA/metabolismo , RNA Polimerase II/metabolismo , Ribonuclease H/metabolismo , Fatores de Tempo
19.
Mol Cell ; 44(3): 410-423, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22055187

RESUMO

Histone acetyltransferase (HAT) complexes are coactivators that are important for transcriptional activation by modifying chromatin. Metazoan SAGA and ATAC are distinct multisubunits complexes that share the same catalytic HAT subunit (GCN5 or PCAF). Here, we show that these human HAT complexes are targeted to different genomic loci representing functionally distinct regulatory elements both at broadly expressed and tissue-specific genes. While SAGA can principally be found at promoters, ATAC is recruited to promoters and enhancers, yet only its enhancer binding is cell-type specific. Furthermore, we show that ATAC functions at a set of enhancers that are not bound by p300, revealing a class of enhancers not yet identified. These findings demonstrate important functional differences between SAGA and ATAC coactivator complexes at the level of the genome and define a role for the ATAC complex in the regulation of a set of enhancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Sítios de Ligação , DNA Polimerase II/metabolismo , Elementos Facilitadores Genéticos , Células HeLa , Histona Acetiltransferases/genética , Humanos , Complexos Multiproteicos , Regiões Promotoras Genéticas , Interferência de RNA , Transcrição Gênica , Transfecção , Fatores de Transcrição de p300-CBP/genética
20.
Exp Cell Res ; 342(2): 145-58, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26968636

RESUMO

Although chemical inhibition of the DNA damage response (DDR) in cancer cells triggers cell death, it is not clear if the fork blockade achieved with inhibitors that neutralise proteins of the replisome is sufficient on its own to overcome the DDR. Monoclonal antibodies to PCNA, which block the DNA elongation process in vitro, have been developed. When these antibodies were transduced into cancer cells, they are able to inhibit the incorporation of nucleoside analogues. When co-delivered with anti-PCNA siRNA, the cells were flattened and the size of their nuclei increased by up to 3-fold, prior to cell death. Analysis of these nuclei by super-resolution microscopy revealed the presence of large numbers of phosphorylated histone H2AX foci. A senescence-like phenotype of the transduced cells was also observed upon delivery of the corresponding Fab molecules or following PCNA gene disruption or when the Fab fragment of an antibody that neutralises DNA polymerase alpha was used. Primary melanoma cells and leukaemia cells that are resistant to chemical inhibitors were similarly affected by these antibody treatments. These results demonstrate that transduced antibodies can trigger a lethal DNA replication stress, which kills cancer cells by abolishing the biological activity of several constituents of the replisome.


Assuntos
Anticorpos Monoclonais Murinos/farmacologia , Antineoplásicos/farmacologia , Replicação do DNA/efeitos dos fármacos , DNA de Neoplasias/genética , Animais , Quebras de DNA de Cadeia Dupla , DNA Polimerase III/antagonistas & inibidores , DNA de Neoplasias/metabolismo , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas de Silenciamento de Genes , Células HeLa , Histonas/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/farmacologia , Camundongos Endogâmicos BALB C , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/imunologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA