Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Cell ; 69(2): 334-346.e4, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29307513

RESUMO

Visualizing dynamics of kinase activity in living animals is essential for mechanistic understanding of cell and developmental biology. We describe GFP-based kinase reporters that phase-separate upon kinase activation via multivalent protein-protein interactions, forming intensively fluorescent droplets. Called SPARK (separation of phases-based activity reporter of kinase), these reporters have large dynamic range (fluorescence change), high brightness, fast kinetics, and are reversible. The SPARK-based protein kinase A (PKA) reporter reveals oscillatory dynamics of PKA activities upon G protein-coupled receptor activation. The SPARK-based extracellular signal-regulated kinase (ERK) reporter unveils transient dynamics of ERK activity during tracheal metamorphosis in live Drosophila. Because of intensive brightness and simple signal pattern, SPARKs allow easy examination of kinase signaling in living animals in a qualitative way. The modular design of SPARK will facilitate development of reporters of other kinases.


Assuntos
Imagem Óptica/métodos , Fosfotransferases/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Drosophila , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Fosforilação , Fosfotransferases/metabolismo
2.
Chemistry ; 28(19): e202200026, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35178798

RESUMO

CRANAD-2 is a fluorogenic curcumin derivative used for near-infrared detection and imaging in vivo of amyloid aggregates, which are involved in neurodegenerative diseases. We explore the performance of CRANAD-2 in two super-resolution imaging techniques, namely stimulated emission depletion (STED) and single-molecule localization microscopy (SMLM), with markedly different fluorophore requirements. By conveniently adapting the concentration of CRANAD-2, which transiently binds to amyloid fibrils, we show that it performs well in both techniques, achieving a resolution in the range of 45-55 nm. Correlation of SMLM with atomic force microscopy (AFM) validates the resolution of fine features in the reconstructed super-resolved image. The good performance and versatility of CRANAD-2 provides a powerful tool for near-infrared nanoscopic imaging of amyloids in vitro and in vivo.


Assuntos
Amiloide , Curcumina , Corantes Fluorescentes , Microscopia de Força Atômica/métodos , Imagem Individual de Molécula
3.
Photochem Photobiol Sci ; 21(9): 1545-1555, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35041199

RESUMO

miniSOG, developed as the first fully genetically encoded singlet oxygen photosensitiser, has found various applications in cell imaging and functional studies. Yet, miniSOG has suboptimal properties, including a low yield of singlet oxygen generation, which can nevertheless be improved tenfold upon blue light irradiation. In a previous study, we showed that this improvement was due to the photolysis of the miniSOG chromophore, flavin mononucleotide (FMN), into lumichrome, with concomitant removal of the phosphoribityl tail, thereby improving oxygen access to the alloxazine ring. We thus reasoned that a chromophore with a shorter tail would readily improve the photosensitizing properties of miniSOG. In this work, we show that the replacement of FMN by riboflavin (RF), which lacks the bulky phosphate group, significantly improves the singlet oxygen quantum yield (ΦΔ). We then proceeded to mutagenize the residues stabilizing the phosphate group of FMN to alter the chromophore specificity. We identified miniSOG-R57Q as a flavoprotein that selectively binds RF in cellulo, with a modestly improved ΦΔ. Our results show that it is possible to modify the flavin specificity of a given flavoprotein, thus providing a new option to tune its photophysical properties, including those leading to photosensitization. We also determined the structure of miniSOG-Q103L, a mutant with a much increased ΦΔ, which allowed us to postulate the existence of another access channel to FMN for molecular oxygen.


Assuntos
Mononucleotídeo de Flavina , Oxigênio Singlete , Mononucleotídeo de Flavina/química , Flavoproteínas/química , Oxigênio/química , Fosfatos , Riboflavina , Oxigênio Singlete/química
5.
J Am Chem Soc ; 142(2): 922-930, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31782926

RESUMO

A combination of time-resolved optical spectroscopy and nanoscale imaging has been used to study the complex binding to amyloids of a photocatalyst that selectively photo-oxygenates pathogenic aggregates, as well as the consequences of its irradiation. Correlative atomic force microscopy (AFM) and fluorescence microscopy reveals topography-dependent binding of the dye to model ß-lactoglobulin fibers, which may also explain the observed difference in their response to photodegradation. We provide direct evidence of the photosensitization of singlet oxygen by the photocatalyst bound to amyloid fibers by direct detection of its NIR phosphorescence. The effect of singlet oxygen at the molecular level brings about nanoscale morphological changes that can be observed with AFM at the single-fiber level. We also find differential response of two α-synuclein mutants to photodamage, which can be rationalized by the presence of amino acids susceptible to photo-oxygenation. Overall, our results help to unravel some of the complexity associated with highly heterogeneous amyloid populations and contribute to the development of improved phototherapeutic strategies for amyloid-related disorders.


Assuntos
Amiloide/química , Luz/efeitos adversos , Microscopia de Força Atômica/métodos , alfa-Sinucleína/química , Benzotiazóis/química , Lactoglobulinas/química , Microscopia de Fluorescência/métodos , Espécies Reativas de Oxigênio/química , Oxigênio Singlete/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos
6.
J Am Chem Soc ; 141(11): 4526-4530, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30821975

RESUMO

A family of proteases called caspases mediate apoptosis signaling in animals. We report a GFP-based fluorogenic protease reporter, dubbed "FlipGFP", by flipping a beta strand of the GFP. Upon protease activation and cleavage, the beta strand is restored, leading to reconstitution of the GFP and fluorescence. FlipGFP-based TEV protease reporter achieves 100-fold fluorescence change. A FlipGFP-based executioner caspase reporter visualized apoptosis in live zebrafish embryos with spatiotemporal resolution. FlipGFP also visualized apoptotic cells in the midgut of Drosophila. Thus, the FlipGFP-based caspase reporter will be useful for monitoring apoptosis during animal development and for designing reporters of proteases beyond caspases. The design strategy can be further applied to a red fluorescent protein for engineering a red fluorogenic protease reporter.


Assuntos
Apoptose , Genes Reporter/genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Imagem Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Animais , Drosophila melanogaster , Células HEK293 , Células HeLa , Humanos , Conformação Proteica em Folha beta
7.
Photochem Photobiol Sci ; 14(2): 280-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25375892

RESUMO

Flavin-binding fluorescent proteins (FbFPs) are a class of fluorescent reporters that have been increasingly used as reporters in the study of cellular structures and dynamics. Flavin's intrinsic high singlet oxygen ((1)O2) quantum yield (ΦΔ = 0.51) provides a basis for the development of new FbFP mutants capable of photosensitising (1)O2 for mechanistic and therapeutic applications, as recently exemplified by the FbFP miniSOG. In the present work we report an investigation on the (1)O2 photoproduction by Pp2FbFP L30M, a novel derivative of Pseudomonas putida Pp2FbFP. Direct detection of (1)O2 through its phosphorescence at 1275 nm yielded the value ΦΔ = 0.09 ± 0.01, which is the highest (1)O2 quantum yield reported to date for any FP and is approximately 3-fold higher than the ΦΔ for miniSOG. Unlike miniSOG, transient absorption measurements revealed the existence of two independent triplet states each with a different ability to sensitise (1)O2.


Assuntos
Proteínas Luminescentes/química , Oxigênio Singlete/química , Escherichia coli , Cinética , Transtornos de Fotossensibilidade , Pseudomonas putida , Análise Espectral
8.
Methods Mol Biol ; 2564: 143-183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36107341

RESUMO

Flavin-based fluorescent proteins (FbFPs), a class of small fluorescent proteins derived from light-oxygen-voltage (LOV) domains, bind ubiquitous endogenous flavins as chromophores. Due to their unique properties, they can be used as versatile in vivo reporter proteins under aerobic and anaerobic conditions. This chapter presents methodologies for in-depth characterization of the biochemical, spectroscopic, photophysical, and photochemical properties of FbFPs.


Assuntos
Dinitrocresóis , Flavinas , Flavinas/metabolismo , Oxigênio/metabolismo , Proteínas
9.
ACS Infect Dis ; 8(1): 86-90, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35026951

RESUMO

The Min protein system is a cell division regulator in Escherichia coli. Under normal growth conditions, MinD is associated with the membrane and undergoes pole-to-pole oscillations. The period of these oscillations has been previously proposed as a reporter for the bacterial physiological state at the single-cell level and has been used to monitor the response to sublethal challenges from antibiotics, temperature, or mechanical fatigue. Using real-time single-cell fluorescence imaging, we explore here the effect of photodynamic treatment on MinD oscillations. Irradiation of bacteria in the presence of the photosensitizer methylene blue disrupts the MinD oscillation pattern depending on its concentration. In contrast to antibiotics, which slow down the oscillation, photodynamic treatment results in an abrupt interruption, reflecting divergent physiological mechanisms leading to bacterial death. We show that MinD oscillations are sensitive to mild photodynamic effects that are overlooked by traditional methods, expanding the toolbox for mechanistic studies in antimicrobial photodynamic therapy.


Assuntos
Proteínas de Escherichia coli , Fotoquimioterapia , Divisão Celular , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fármacos Fotossensibilizantes
10.
Chem Commun (Camb) ; 57(69): 8648-8651, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34369943

RESUMO

We report that Thioflavin T (ThT), the reference fluorogenic probe for amyloid detection, displays photodynamic activity against bacterial biofilms. ThT recognizes key structures of the biofilm matrix, disrupting the complex architecture and efficiently inactivating bacterial cells. We also show that ThT phototherapy synergistically boosts the activity of conventional antimicrobials.


Assuntos
Antibacterianos/farmacologia , Benzotiazóis/farmacologia , Biofilmes/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Luz , Testes de Sensibilidade Microbiana , Staphylococcus aureus/fisiologia
11.
Methods Mol Biol ; 2202: 165-188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32857355

RESUMO

Singlet oxygen (1O2) is the first electronic excited state of molecular oxygen. Due to its non-radical and non-ionic character as well as its mild reactivity, 1O2 has a pivotal role in cell signaling processes at low concentration, yet it is cytotoxic at high concentrations. Quantifying the production of 1O2, particularly in biological systems, is therefore essential for understanding and controlling its effects. 1O2 can be produced by chemical and biological reactions, yet its most common method of production is by photosensitization, whereby an initially photoexcited molecule transfers its acquired electronic energy to the dioxygen molecule. The efficiency of this process is characterized by the 1O2 production quantum yield, ΦΔ, which can be determined by directly monitoring its intrinsic weak near-infrared phosphorescence or indirectly by trapping it with a suitable acceptor, a process that can be monitored by common analytical techniques. Indirect methods are thus very popular, yet they may lead to severe errors if used incorrectly. Herein we describe the common aspects of indirect methods and propose a general step-by-step procedure for the determination of ΦΔ values. In addition, we identify the key experimental conditions that need to be controlled to obtain meaningful results.


Assuntos
Oxigênio/química , Oxigênio Singlete/análise , Oxigênio Singlete/química , Modelos Teóricos , Oxigênio/metabolismo , Fármacos Fotossensibilizantes/química
12.
Nanoscale ; 12(28): 15050-15053, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32666991

RESUMO

We report the use of the amyloid probe Thioflavin T (ThT) as a specific and exchangeable fluorophore for stimulated emission depletion (STED) super-resolution imaging of amyloid fibers. This method achieves a spatial resolution in the range of 60-70 nm, low image background and increased photostability that enables long-term STED imaging. These results expand the widespread uses of ThT and can be potentially extended to other common amyloid fluorescent probes, providing new tools for the study of amyloid diseases.


Assuntos
Benzotiazóis , Corantes Fluorescentes , Amiloide , Microscopia de Fluorescência
13.
ACS Appl Mater Interfaces ; 12(28): 31235-31241, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32476402

RESUMO

Mechano-bactericidal nanomaterials rely on their mechanical or physical interactions with bacteria and are promising antimicrobial strategies that overcome bacterial resistance. However, the real effect of mechanical versus chemical action on their activity is under debate. In this paper, we quantify the forces necessary to produce critical damage to the bacterial cell wall by performing simultaneous nanoindentation and fluorescence imaging of single bacterial cells. Our experimental setup allows puncturing the cell wall of an immobilized bacterium with the tip of an atomic force microscope (AFM) and following in real time the increase in the fluorescence signal from a cell membrane integrity marker. We correlate the forces exerted by the AFM tip with the fluorescence dynamics for tens of cells, and we find that forces above 20 nN are necessary to exert critical damage. Moreover, a similar experiment is performed in which bacterial viability is assessed through physiological activity, in order to gain a more complete view of the effect of mechanical forces on bacteria. Our results contribute to the quantitative understanding of the interaction between bacteria and nanomaterials.


Assuntos
Antibacterianos/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Microscopia de Força Atômica , Microscopia de Fluorescência
14.
Sci Rep ; 9(1): 2428, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787421

RESUMO

miniSOG is the first flavin-binding protein that has been developed with the specific aim of serving as a genetically-encodable light-induced source of singlet oxygen (1O2). We have determined its 1.17 Å resolution structure, which has allowed us to investigate its mechanism of photosensitization using an integrated approach combining spectroscopic and structural methods. Our results provide a structural framework to explain the ability of miniSOG to produce 1O2 as a competition between oxygen- and protein quenching of its triplet state. In addition, a third excited-state decay pathway has been identified that is pivotal for the performance of miniSOG as 1O2 photosensitizer, namely the photo-induced transformation of flavin mononucleotide (FMN) into lumichrome, which increases the accessibility of oxygen to the flavin FMN chromophore and makes protein quenching less favourable. The combination of the two effects explains the increase in the 1O2 quantum yield by one order of magnitude upon exposure to blue light. Besides, we have identified several surface electron-rich residues that are progressively photo-oxidized, further contributing to facilitate the production of 1O2. Our results help reconcile the apparent poor level of 1O2 generation by miniSOG and its excellent performance in correlative light and electron microscopy experiments.


Assuntos
Proteínas de Arabidopsis/genética , Fármacos Fotossensibilizantes/metabolismo , Conformação Proteica , Proteínas Serina-Treonina Quinases/genética , Oxigênio Singlete/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestrutura , Fenômenos Biofísicos , Flavinas/química , Flavinas/genética , Luz , Microscopia Eletrônica , Oxirredução , Oxigênio/metabolismo , Transtornos de Fotossensibilidade , Fármacos Fotossensibilizantes/química , Ligação Proteica/genética , Engenharia de Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/ultraestrutura , Oxigênio Singlete/química
15.
Sci Rep ; 8(1): 15021, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30301917

RESUMO

Flavin-binding fluorescent proteins (FPs) are genetically encoded in vivo reporters, which are derived from microbial and plant LOV photoreceptors. In this study, we comparatively analyzed ROS formation and light-driven antimicrobial efficacy of eleven LOV-based FPs. In particular, we determined singlet oxygen (1O2) quantum yields and superoxide photosensitization activities via spectroscopic assays and performed cell toxicity experiments in E. coli. Besides miniSOG and SOPP, which have been engineered to generate 1O2, all of the other tested flavoproteins were able to produce singlet oxygen and/or hydrogen peroxide but exhibited remarkable differences in ROS selectivity and yield. Accordingly, most LOV-FPs are potent photosensitizers, which can be used for light-controlled killing of bacteria. Furthermore, the two variants Pp2FbFP and DsFbFP M49I, exhibiting preferential photosensitization of singlet oxygen or singlet oxygen and superoxide, respectively, were shown to be new tools for studying specific ROS-induced cell signaling processes. The tested LOV-FPs thus further expand the toolbox of optogenetic sensitizers usable for a broad spectrum of microbiological and biomedical applications.


Assuntos
Escherichia coli/metabolismo , Flavoproteínas/metabolismo , Optogenética , Fármacos Fotossensibilizantes/farmacologia , Dinitrocresóis/química , Escherichia coli/patogenicidade , Escherichia coli/efeitos da radiação , Flavoproteínas/química , Luz , Transtornos de Fotossensibilidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Oxigênio Singlete/metabolismo , Superóxidos/metabolismo
16.
Chem Commun (Camb) ; 52(54): 8405-8, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27301706

RESUMO

Photosensitizing flavoproteins have great potential as tags for correlative light and electron microscopy (CLEM). We examine the photostability of miniSOG mutants and their ability to photo-oxidize diaminobenzidine, both key aspects for CLEM. Our experiments reveal a complex relation between these parameters and the production of different reactive oxygen species.


Assuntos
Flavoproteínas/metabolismo , Luz , Microscopia Eletrônica , Fármacos Fotossensibilizantes/metabolismo , Oxigênio Singlete/metabolismo
17.
Chem Commun (Camb) ; 52(59): 9300, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27384504

RESUMO

Correction for 'Assessing the potential of photosensitizing flavoproteins as tags for correlative microscopy' by Alberto Rodríguez-Pulido et al., Chem. Commun., 2016, 52, 8405-8408.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA